OpenMS  2.5.0
EmgScoring.h
Go to the documentation of this file.
1 // --------------------------------------------------------------------------
2 // OpenMS -- Open-Source Mass Spectrometry
3 // --------------------------------------------------------------------------
4 // Copyright The OpenMS Team -- Eberhard Karls University Tuebingen,
5 // ETH Zurich, and Freie Universitaet Berlin 2002-2020.
6 //
7 // This software is released under a three-clause BSD license:
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright
11 // notice, this list of conditions and the following disclaimer in the
12 // documentation and/or other materials provided with the distribution.
13 // * Neither the name of any author or any participating institution
14 // may be used to endorse or promote products derived from this software
15 // without specific prior written permission.
16 // For a full list of authors, refer to the file AUTHORS.
17 // --------------------------------------------------------------------------
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 // ARE DISCLAIMED. IN NO EVENT SHALL ANY OF THE AUTHORS OR THE CONTRIBUTING
22 // INSTITUTIONS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
23 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
24 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
25 // OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
26 // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
27 // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
28 // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // --------------------------------------------------------------------------
31 // $Maintainer: Hannes Roest $
32 // $Authors: Hannes Roest $
33 // --------------------------------------------------------------------------
34 
35 #pragma once
36 
37 #include <vector>
38 #include <boost/math/special_functions/fpclassify.hpp> // for isnan
42 
45 
47 
48 
49 namespace OpenMS
50 {
51 
59  class EmgScoring
60  {
61 
62  public :
63 
64  EmgScoring() { }
65 
67 
68  void setFitterParam(Param param)
69  {
71  }
72 
74  {
75  return fitter_emg1D_.getDefaults();
76  }
77 
79  template<typename SpectrumType, class TransitionT>
81  {
82  std::vector<double> fit_scores;
83  double avg_score = 0;
84  bool smooth_data = false;
85  for (Size k = 0; k < transition_group.size(); k++)
86  {
87  // get the id, then find the corresponding transition and features within this peakgroup
88  String native_id = transition_group.getChromatograms()[k].getNativeID();
89  Feature f = mrmfeature.getFeature(native_id);
90  OPENMS_PRECONDITION(f.getConvexHulls().size() == 1, "Convex hulls need to have exactly one hull point structure");
91 
92  // TODO what if score is -1 ?? e.g. if it is undefined
93  double fscore = elutionModelFit(f.getConvexHulls()[0].getHullPoints(), smooth_data);
94  fit_scores.push_back(fscore);
95  avg_score += fscore;
96  }
97 
98  avg_score /= transition_group.size();
99  return avg_score;
100  }
101 
102  // Fxn from FeatureFinderAlgorithmMRM
103  // TODO: check whether we can leave out some of the steps here, e.g. gaussian smoothing
104  double elutionModelFit(ConvexHull2D::PointArrayType current_section, bool smooth_data)
105  {
106  // We need at least 2 datapoints in order to create a fit
107  if (current_section.size() < 2)
108  {
109  return -1;
110  }
111 
112  // local PeakType is a small hack since here we *need* data of type
113  // Peak1D, otherwise our fitter will not accept it.
114  typedef Peak1D LocalPeakType;
115 
116  // -- cut line 301 of FeatureFinderAlgorithmMRM
117  std::vector<LocalPeakType> data_to_fit;
118  prepareFit_(current_section, data_to_fit, smooth_data);
119  InterpolationModel * model_rt = nullptr;
120  double quality = fitRT_(data_to_fit, model_rt);
121  // cut line 354 of FeatureFinderAlgorithmMRM
122  delete model_rt;
123 
124  return quality;
125 
126  }
127 
128  protected:
129  template<class LocalPeakType>
130  double fitRT_(std::vector<LocalPeakType> & rt_input_data, InterpolationModel * & model)
131  {
132  double quality;
133  //Param param;
134 
135  /*EmgFitter
136  param.setValue( "tolerance_stdev_bounding_box", tolerance_stdev_box_);
137  param.setValue( "statistics:mean", rt_stat_.mean() );
138  param.setValue( "statistics:variance", rt_stat_.variance() );
139  param.setValue( "interpolation_step", interpolation_step_rt_ );
140  param.setValue( "max_iteration", max_iteration_);
141  param.setValue( "deltaAbsError", deltaAbsError_);
142  param.setValue( "deltaRelError", deltaRelError_);
143  */
144 
145  // Set parameter for fitter
146  //fitter_emg1D.setParameters(param);
147  // Construct model for rt
148  quality = fitter_emg1D_.fit1d(rt_input_data, model);
149 
150  // Check quality
151  if (boost::math::isnan(quality)) quality = -1.0;
152  return quality;
153  }
154 
155  // Fxn from FeatureFinderAlgorithmMRM
156  // TODO: check whether we can leave out some of the steps here, e.g. gaussian smoothing
157  template<class LocalPeakType>
158  void prepareFit_(const ConvexHull2D::PointArrayType & current_section, std::vector<LocalPeakType> & data_to_fit, bool smooth_data)
159  {
160  // typedef Peak1D LocalPeakType;
161  PeakSpectrum filter_spec;
162  // first smooth the data to prevent outliers from destroying the fit
163  for (ConvexHull2D::PointArrayType::const_iterator it = current_section.begin(); it != current_section.end(); it++)
164  {
165  LocalPeakType p;
166  p.setMZ(it->getX());
167  p.setIntensity(it->getY());
168  filter_spec.push_back(p);
169  }
170 
171  // add two peaks at the beginning and at the end for better fit
172  // therefore calculate average distance first
173  std::vector<double> distances;
174  for (Size j = 1; j < filter_spec.size(); ++j)
175  {
176  distances.push_back(filter_spec[j].getMZ() - filter_spec[j - 1].getMZ());
177  }
178  double dist_average = std::accumulate(distances.begin(), distances.end(), 0.0) / (double) distances.size();
179 
180  // append peaks
181  Peak1D new_peak;
182  new_peak.setIntensity(0);
183  new_peak.setMZ(filter_spec.back().getMZ() + dist_average);
184  filter_spec.push_back(new_peak);
185  new_peak.setMZ(filter_spec.back().getMZ() + dist_average);
186  filter_spec.push_back(new_peak);
187  new_peak.setMZ(filter_spec.back().getMZ() + dist_average);
188  filter_spec.push_back(new_peak);
189 
190  // prepend peaks
191  new_peak.setMZ(filter_spec.front().getMZ() - dist_average);
192  filter_spec.insert(filter_spec.begin(), new_peak);
193  new_peak.setMZ(filter_spec.front().getMZ() - dist_average);
194  filter_spec.insert(filter_spec.begin(), new_peak);
195  new_peak.setMZ(filter_spec.front().getMZ() - dist_average);
196  filter_spec.insert(filter_spec.begin(), new_peak);
197 
198  // To get an estimate of the peak quality, we probably should not smooth
199  // and/or transform the data.
200  if (smooth_data)
201  {
202  GaussFilter filter;
203  Param filter_param(filter.getParameters());
204  filter.setParameters(filter_param);
205  filter_param.setValue("gaussian_width", 4 * dist_average);
206  filter.setParameters(filter_param);
207  filter.filter(filter_spec);
208  }
209 
210  // transform the data for fitting and fit RT profile
211  for (Size j = 0; j != filter_spec.size(); ++j)
212  {
213  LocalPeakType p;
214  p.setPosition(filter_spec[j].getMZ());
215  p.setIntensity(filter_spec[j].getIntensity());
216  data_to_fit.push_back(p);
217  }
218  }
219 
221  };
222 }
223 
OpenMS::Param
Management and storage of parameters / INI files.
Definition: Param.h:73
OpenMS::DefaultParamHandler::getParameters
const Param & getParameters() const
Non-mutable access to the parameters.
OpenMS::Size
size_t Size
Size type e.g. used as variable which can hold result of size()
Definition: Types.h:127
OpenMS::MRMTransitionGroup
The representation of a group of transitions in a targeted proteomics experiment.
Definition: MRMTransitionGroup.h:67
OpenMS::Constants::k
const double k
EmgFitter1D.h
OpenMS::GaussFilter::filter
void filter(MSSpectrum &spectrum)
Smoothes an MSSpectrum containing profile data.
Definition: GaussFilter.h:92
OpenMS::Feature::getConvexHulls
const std::vector< ConvexHull2D > & getConvexHulls() const
Non-mutable access to the convex hulls.
OpenMS::Peak1D::setMZ
void setMZ(CoordinateType mz)
Mutable access to m/z.
Definition: Peak1D.h:121
MRMFeature.h
OpenMS::MRMFeature::getFeature
Feature & getFeature(const String &key)
get a specified feature
OpenMS::MRMTransitionGroup::getChromatograms
std::vector< ChromatogramType > & getChromatograms()
Definition: MRMTransitionGroup.h:174
OpenMS::Peak1D::setIntensity
void setIntensity(IntensityType intensity)
Mutable access to the data point intensity (height)
Definition: Peak1D.h:112
double
OpenMS::EmgScoring::fitRT_
double fitRT_(std::vector< LocalPeakType > &rt_input_data, InterpolationModel *&model)
Definition: EmgScoring.h:130
OpenMS::Feature
An LC-MS feature.
Definition: Feature.h:70
OpenMS::EmgFitter1D
Exponentially modified gaussian distribution fitter (1-dim.) using Levenberg-Marquardt algorithm (Eig...
Definition: EmgFitter1D.h:46
OpenMS::EmgScoring::EmgScoring
EmgScoring()
Definition: EmgScoring.h:64
GaussFilter.h
OPENMS_PRECONDITION
#define OPENMS_PRECONDITION(condition, message)
Precondition macro.
Definition: openms/include/OpenMS/CONCEPT/Macros.h:136
OpenMS::EmgScoring::getDefaults
Param getDefaults()
Definition: EmgScoring.h:73
MRMTransitionGroup.h
OpenMS::DefaultParamHandler::setParameters
void setParameters(const Param &param)
Sets the parameters.
OpenMS::MRMFeature
A multi-chromatogram MRM feature.
Definition: MRMFeature.h:50
OpenMS::EmgScoring
Scoring of an elution peak using an exponentially modified gaussian distribution model.
Definition: EmgScoring.h:59
EmgModel.h
OpenMS::InterpolationModel
Abstract class for 1D-models that are approximated using linear interpolation.
Definition: InterpolationModel.h:54
OpenMS::Peak1D
A 1-dimensional raw data point or peak.
Definition: Peak1D.h:54
OpenMS::DefaultParamHandler::getDefaults
const Param & getDefaults() const
Non-mutable access to the default parameters.
OpenMS::GaussFilter
This class represents a Gaussian lowpass-filter which works on uniform as well as on non-uniform prof...
Definition: GaussFilter.h:74
OpenMS::EmgScoring::setFitterParam
void setFitterParam(Param param)
Definition: EmgScoring.h:68
OpenMS::ConvexHull2D::PointArrayType
std::vector< PointType > PointArrayType
Definition: ConvexHull2D.h:76
OpenMS::String
A more convenient string class.
Definition: String.h:58
OpenMS::EmgScoring::fitter_emg1D_
EmgFitter1D fitter_emg1D_
Definition: EmgScoring.h:220
OpenMS::EmgScoring::calcElutionFitScore
double calcElutionFitScore(MRMFeature &mrmfeature, MRMTransitionGroup< SpectrumType, TransitionT > &transition_group)
calculate the elution profile fit score
Definition: EmgScoring.h:80
StandardTypes.h
OpenMS
Main OpenMS namespace.
Definition: FeatureDeconvolution.h:46
OpenMS::MRMTransitionGroup::size
Size size() const
Definition: MRMTransitionGroup.h:125
OpenMS::MSSpectrum
The representation of a 1D spectrum.
Definition: MSSpectrum.h:67
OpenMS::EmgScoring::prepareFit_
void prepareFit_(const ConvexHull2D::PointArrayType &current_section, std::vector< LocalPeakType > &data_to_fit, bool smooth_data)
Definition: EmgScoring.h:158
OpenMS::EmgScoring::elutionModelFit
double elutionModelFit(ConvexHull2D::PointArrayType current_section, bool smooth_data)
Definition: EmgScoring.h:104
OpenMS::EmgScoring::~EmgScoring
~EmgScoring()
Definition: EmgScoring.h:66
OpenMS::EmgFitter1D::fit1d
QualityType fit1d(const RawDataArrayType &range, InterpolationModel *&model) override
return interpolation model