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1 General remarks

• This handout will guide you through an introductory tutorial for the OpenMS/-

TOPP software package [1].

• OpenMS [2, 3] is a versatile open-source library for mass spectrometry data anal-

ysis. Based on this library, we offer a collection of command-line tools ready to

be used by end users. These so-called TOPP tools (short for ”The OpenMS Pro-

teomics Pipeline”) [4] can be understood as small building blocks of arbitrarily

complex data analysis workflows.

• In order to facilitate workflow construction, OpenMS was integrated into

KNIME [5], the Konstanz Information Miner, an open-source integration plat-

form providing a powerful and flexible workflow system combined with

advanced data analytics, visualization, and report capabilities. Raw MS data

as well as the results of data processing using TOPP can be visualized using

TOPPView [6].

• This tutorial was designed for use in a hands-on tutorial session but can also be

worked through at home using the online resources. You will become familiar

with some of the basic functionalities of OpenMS/TOPP, TOPPView, as well as

KNIME and learn how to use a selection of TOPP tools used in the tutorial work-

flows.

• All sample data referenced in this tutorial can be found in the

C: Example_Data folder, on the USB stick that came with this tutorial, or re-

leased online on our GitHub repository OpenMS/Tutorials).
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2 Getting started

2.1 Installation

Before we get started we will install OpenMS and KNIME. If you take part in a training

session you will have likely received an USB stick from us that contains the required

data and software. If we provide laptops with the software you may of course skip

the installation process and continue reading the next section.

2.1.1 Installation from the OpenMS USB stick

Please choose the directory that matches your operating system and execute the in-

staller.

For example for Windows you call

• the OpenMS installer: Windows / OpenMS-2.4.0-Win64.exe

• the KNIME installer: Windows / KNIME 3.7.2 Installer (64bit).exe

• OpenMS prerequisites (Windows-only): After installation, before your first use

of the OpenMS plugin in KNIME you will be asked to download it automatically

if certain requirements are not found in your Windows registry. Alternatively,

you can get a bundled version here or on the OpenMS USB stick ( Windows /

OpenMS-2.4-prerequisites-installer.exe).

on macOS you call

• the OpenMS installer: Mac / OpenMS-2.4.0-macOS.dmg

• the KNIME installer: Mac / knime_3.7.2.app.macosx.cocoa.x86_64.dmg

and follow the instructions. For the OpenMS installation on macOS, you need to

accept the license drag and drop the OpenMS folder into your Applications folder.

Note: Due to increasing security measures for downloaded apps (e.g. path

randomization) onmacOS you might need to open TOPPView.app and TOP-

PAS.app while holding ctrl and accept the warning. If the app still does not

open, you might need to move them from Applications OpenMS-2.4.0 to

e.g. your Desktop and back.

On Linux you can extract KNIME to a folder of your choice and for TOPPView you

need to install OpenMS via your package manager or build it on your own with the

instructions under www.openms.de/documentation.
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Note: If you have installed OpenMS on Linux or macOS via your package

manager (for instance by installing the OpenMS-2.4.0-Linux.deb package),

then you need to set the OPENMS_DATA_PATH variable to the directory contain-

ing the shared data (normally /usr/share/OpenMS). This must be done prior

to running any TOPP tool.

2.1.2 Installation from the internet

If you are working through this tutorial at home you can get the installers under the

following links:

• OpenMS: https://www.openms.de/download/openms-binaries

• KNIME: https://www.knime.org/downloads/overview

• OpenMS prerequisites (Windows-only): After installation, before your first use

of the OpenMS plugin in KNIME you will be asked to download it automatically

if certain requirements are not found in your Windows registry. Alternatively,

you can get a bundled version here.

Choose the installers for the platform you are working on.

2.2 Data conversion

Each MS instrument vendor has one or more formats for storing the acquired data.

Converting these data into an open format (preferably mzML) is the very first step

when you want to work with open-source mass spectrometry software. A freely avail-

able conversion tool is MSConvert, which is part of a ProteoWizard installation. All files

used in this tutorial have already been converted tomzML by us, so you do not need

to perform the data conversion yourself. However, we provide a small raw file so you

can try the important step of raw data conversion for yourself.

Note: The OpenMS installation package for Windows automatically installs

ProteoWizard, so you do not need to download and install it separately. Due

to restrictions from the instrument vendors, file format conversion for most

formats is only possible on Windows systems. In practice, performing the

conversion to mzML on the acquisition PC connected to the instrument is

usually the most convenient option.

To convert raw data to mzML using ProteoWizard you can either use MSConvertGUI (a

graphical user interface) or msconvert (a simple command line tool). Both tools are
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Figure 1: MSConvertGUI (part of ProteoWizard), allows converting raw files to mzML. Select the raw files
you want to convert by clicking on the browse button and then on Add . Default parameters can usually
be kept as-is. To reduce the initial data size, make sure that the peakPicking filter (converts profile data
to centroided data (see Fig. 2)) is listed, enabled (true) and applied to all MS levels (parameter ”1-”).
Start the conversion process by clicking on the Start button.

available in:

C: / Program Files / OpenMS-2.4.0 / share / OpenMS / THIRDPARTY / pwiz-bin.

You can find a small RAW file on the USB stick: Example_Data Introduction datasets

raw.

2.2.1 MSConvertGUI

MSConvertGUI (see Fig. 1) exposes the main parameters for data conversion in a con-

venient graphical user interface.

2.2.2 msconvert

The msconvert command line tool has no user interface but offers more options than

the application MSConvertGUI. Additionally, since it can be used within a batch script,

it allows converting large numbers of files and can be much more easily automatized.

To convert and pick the file raw_data_file.RAW you may write:
msconvert raw_data_file.RAW --filter ”peakPicking true 1-”

in your command line.

To convert all RAW files in a folder may write:
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Figure 2: The amount of data in a spectra is reduced by peak picking. Here a profile spectrum (blue)
is converted to centroided data (green). Most algorithms from this point on will work with centroided
data.

msconvert *.RAW -o my_output_dir

Note: To display all options you may type msconvert --help . Additional informa-

tion is available on the ProteoWizard web page.

2.3 Data visualization using TOPPView

Visualizing the data is the first step in quality control, an essential tool in understand-

ing the data, and of course an essential step in pipeline development. OpenMS pro-

vides a convenient viewer for some of the data: TOPPView.

We will guide you through some of the basic features of TOPPView. Please familiar-

ize yourself with the key controls and visualization methods. We will make use of

these later throughout the tutorial. Let’s start with a first look at one of the files of

our tutorial data set. Note that conceptually, there are no differences in visualizing

metabolomic or proteomic data. Here, we inspect a simple proteomic measurement:

• Start TOPPView (see Windows’ Start-Menu or Applications OpenMS-2.4.0 on

macOS)

• Go to File Open File , navigate to the directory where you copied the contents

of the USB stick to, and select Example_Data Introduction datasets small

velos005614.mzML . This file contains only a reduced LC-MS map 1 of a label-free

proteomic platelet measurement recorded on an Orbitrap velos. The other two

mzML files contain technical replicates of this experiment. First, we want to

1only a selected RT and m/z range was extracted using the TOPP tool FileFilter
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Figure 3: TOPPView, the graphical application for viewing mass spectra and analysis results. Top
window shows a small region of a peak map. In this 2D representation of the measured spectra, signals
of eluting peptides are colored according to the raw peak intensities. The lower window displays an
extracted spectrum (=scan) from the peak map. On the right side, the list of spectra can be browsed.

Figure 4: 3D representation of the measured spectra, signals of eluting peptides are colored accord-
ing to the raw peak intensities.
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obtain a global view on the whole LC-MS map - the default option Map view 2D

is the correct one and we can click the Ok button.

• Play around.

• Three basic modes allow you to interact with the displayed data: scrolling, zoom-

ing and measuring:

– Scroll mode

* Is activated by default (though each loaded spectra file is displayed

zoomed out first, so you do not need to scroll).

* Allows you to browse your data by moving around in RT and m/z range.

* When zoomed in, you can scroll through the spectra. Click-drag on the

current view.

* Arrow keys can be used to scroll the view as well.

– Zoom mode

* Zooming into the data: either mark an area in the current view with

your mouse while holding the left mouse button plus the Ctrl key to

zoom to this area or use your mouse wheel to zoom in and out.

* All previous zoom levels are stored in a zoom history. The zoom history

can be traversed using Ctrl + + or Ctrl + - or the mouse wheel (scroll

up and down).

* Pressing backspace zooms out to show the full LC-MS map (and

also resets the zoom history).

– Measure mode

* It is activated using the (shift) key.

* Press the left mouse button down while a peak is selected and drag the

mouse to another peak to measure the distance between peaks.

* This mode is implemented in the 1D and 2D mode only.

• Right click on your 2D map and select Switch to 3D view and examine your data in

3D mode (see Fig. 4)

• Go back to the 2D view. In 2D mode, visualize your data in different normaliza-

tion modes, use linear, percentage and log-view (icons on the upper left tool

bar).

Note: On macOS, due to a bug in one of the external libraries used by

OpenMS, you will see a small window of the 3D mode when switching

to 2D. Close the 3D tab in order to get rid of it.
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• In TOPPView you can also execute TOPP tools. Go to Tools Apply tool (whole layer)

and choose a TOPP tool (e.g., FileInfo) and inspect the results.

Dependent on your data MS/MS spectra can be visualized as well (see Fig.5) . You can

do so, by double-click on the MS/MS spectrum shown in scan view.

Figure 5: MS/MS spectrum

2.4 Introduction to KNIME / OpenMS

Using OpenMS in combination with KNIME, you can create, edit, open, save, and run

workflows that combine TOPP tools with the powerful data analysis capabilities of

KNIME. Workflows can be created conveniently in a graphical user interface. The pa-

rameters of all involved tools can be edited within the application and are also saved

as part of the workflow. Furthermore, KNIME interactively performs validity checks

during the workflow editing process, in order to make it more difficult to create an

invalid workflow.

Throughout most parts of this tutorial you will use KNIME to create and execute work-

flows. The first step is to make yourself familiar with KNIME. Additional information

on basic usage of KNIME can be found on the KNIME Getting Started page. However,

the most important concepts will also be reviewed in this tutorial.

2.4.1 Plugin and dependency installation

Before we can start with the tutorial we need to install all the required extensions for

KNIME. Since KNIME 3.2.1 the program automatically detects missing plugins when

you open a workflow but to make sure that the right source for the OpenMS plu-

gin is chosen, please follow the instructions here. First, we install some additional

extensions that are required by our OpenMS nodes or used in the Tutorials e.g. for

visualization and file handling.
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1. Click on Help Install New Software...

2. From the Work with: drop-down list select http://update.knime.com/analytics-platform/3.7

3. Now select the following plugins from the KNIME & Extensions category

• KNIME Base Chemistry Types & Nodes

• KNIME Chemistry Add-Ons

• KNIME File Handling Nodes (required for OpenMS nodes in general)

• KNIME Interactive R Statistics Integration

• KNIME Report Designer

• KNIME SVG Support

4. Click on Next and follow the instructions (you may but don’t need to restart

KNIME now)

5. Click again on Help Install New Software...

6. From the Work with: drop-down list select
http://update.knime.com/community-contributions/trusted/3.7

7. Now select the following plugin from the ”KNIME Community Contributions -

Cheminformatics” category

• RDKit KNIME integration

8. Click on Next and follow the instructions and after a restart of KNIME the de-

pendencies will be installed.

In addition, we need to install R for the statistical downstream analysis. Choose the

directory that matches your operating system, double-click the R installer and follow

the instructions. We recommend to use the default settings whenever possible. On

macOS you also need to install XQuartz from the same directory.

Afterwards open your R installation. If you use Windows, you will find an ”R x64

3.5.X” icon on your desktop. If you use macOS, you will find R in your Applications

folder. In R type the following lines (you might also copy them from the file R

install_R_packages.R folder on the USB stick):

install.packages("Rserve")
install.packages("Cairo")
install.packages("devtools")
install.packages("ggplot2")
install.packages("ggfortify")
source("https://bioconductor.org/biocLite.R")
biocLite("MSstats")
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In KNIME, click on KNIME Preferences , select the category KNIME R and set the ”Path

to R Home” to your installation path. You can use the following settings, if you in-

stalled R as described above:

• Windows: C: \Program Files \R \R-3.5.X (where X is the version you used to install

the above libraries)

• macOS: /Library/Frameworks/R.framework/Versions/3.5/Resources

You are now ready to install the OpenMS nodes.

• Open KNIME.

• Click on Help Install New Software...

We included a custom KNIME update site to install the OpenMS KNIME plugins

from the USB stick.

• In the now open dialog choose Add... (in the upper right corner of the dialog) to

define a new update site. In the opening dialog enter the following details.

Name: OpenMS 2.4 UpdateSite

Location: file:/KNIMEUpdateSite/2.4.0/

• After pressing OK KNIME will show you all the contents of the added Update

Site.

• Note: From now on, you can use this repository for plugins in the Work with: drop-

down list.

• Select the OpenMS nodes in the ”Uncategorized” category and click Next .

• Follow the instructions and after a restart of KNIME the OpenMS nodes will be

available in the Node repository under “Community Nodes”.

Alternatively, you can try these steps that will install the OpenMS KNIME plugins

from the internet. Note that download can be slow.

• In the now open dialog choose Add... (in the upper right corner of the dialog) to

define a new update site. In the opening dialog enter the following details.

Name: OpenMS 2.4 UpdateSite

Location:

https://abibuilder.informatik.uni-tuebingen.de/archive/openms/knime-plugin/updateSite/nightly/
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• After pressing OK KNIME will show you all the contents of the added Update

Site.

• Note: From now on, you can use this repository for plugins in the Work with: drop-

down list.

• Select the OpenMS nodes in the ”Uncategorized” category and click Next .

• Follow the instructions and after a restart of KNIME the OpenMS nodes will be

available in the Node repository under “Community Nodes”.

2.4.2 KNIME concepts

A workflow is a sequence of computational steps applied to a single or multiple in-

put data to process and analyze the data. In KNIME such workflows are implemented

graphically by connecting so-called nodes. A node represents a single analysis step

in a workflow. Nodes have input and output ports where the data enters the node

or the results are provided for other nodes after processing, respectively. KNIME dis-

tinguishes between different port types, representing different types of data. The

most common representation of data in KNIME are tables (similar to an excel sheet).

Ports that accept tables are marked with a small triangle. For OpenMS nodes, we use

a different port type, so called file ports, representing complete files. Those ports

are marked by a small blue box. Filled blue boxes represent mandatory inputs and

empty blue boxes optional inputs. The same holds for output ports, despite you can

deactivate them in the configuration dialog (double-click on node) under the Out-

putTypes tab. After execution, deactivated ports will be marked with a red cross and

downstream nodes will be inactive (not configurable).

A typical OpenMS workflow in KNIME can be divided in two conceptually different

parts:

• Nodes for signal and data processing, filtering and data reduction. Here, files

are passed between nodes. Execution times of the individual steps are typically

longer for these types of nodes as they perform the main computations.

• Downstream statistical analysis and visualization. Here, tables are passed be-

tween nodes and mostly internal KNIME nodes or nodes from third-party statis-

tics plugins are used. The transfer from files (produced by OpenMS) and tables

usually happens with our provided Exporter and Reader nodes (e.g. MzTabEx-

porter followed by MzTabReader).

Moreover, nodes can have three different states, indicated by the small traffic light

below the node.
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• Inactive, failed, and not yet fully configured nodes are marked red.

• Configured but not yet executed nodes are marked yellow.

• Successfully executed nodes are marked green.

If the node execution fails, the node will switch to the red state. Other anoma-

lies and warnings like missing information or empty results will be presented with a

yellow exclamation mark above the traffic light. Most nodes will be configured as

soon as all input ports are connected. Some nodes need to know about the output

of the predecessor and may stay red until the predecessor was executed. If nodes

still remain in a red state, probably additional parameters have to be provided in the

configuration dialog that can neither be guessed from the data nor filled with sen-

sible defaults. In this case, or if you want to customize the default configuration in

general, you can open the configuration dialog of a node with a double-click on the

node. For all OpenMS nodes you will see a configuration dialog like the one shown in

Figure 6.

Note:OpenMS distinguishes between normal parameters and advanced pa-

rameters. Advanced parameters are by default hidden from the users since

they should only rarely be customized. In case you want to have a look at the

parameters or need to customize them in one of the tutorials you can show

them by clicking on the checkbox Show advanced parameter in the lower part of

the dialog. Afterwards the parameters are shown in a light gray color.

The dialog shows the individual parameters, their current value and type, and, in

the lower part of the dialog, the documentation for the currently selected param-

eter. Please also note the tabs on the top of the configuration dialog. In the case of

OpenMS nodes, there will be another tab called OutputTypes. It contains dropdown

menus for every output port that let you select the output filetype that you want the

node to return (if the tool supports it). For optional output ports you can select Inac-

tive such that the port is crossed out after execution and the associated generation

of the file and possible additional computations are not performed. Note that this

will deactivate potential downstream nodes connected to this port.

2.4.3 Overview of the graphical user interface

The graphical user interface (GUI) of KNIME consists of different components or so-

called panels that are shown in Figure 7. We will briefly introduce the individual pan-

els and their purposes below.
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Figure 6: Node configuration dialog of an OpenMS node.

Figure 7: The KNIME workbench.
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Workflow Editor: The workflow editor is the central part of the KNIME GUI. Here you

assemble the workflow by adding nodes from the Node Repository via ”drag &

drop”. For quick creation of a workflow, note that double-clicking on a node in

the repository automatically connects it to the selected node in the workbench

(connecting all the inputs with as many fitting outputs of the last node). Man-

ually, nodes can be connected by clicking on the output port of one node and

dragging the edge until releasing the mouse at the desired input port of the

next node. Deletions are possible by selecting nodes and/or edges and press-

ing Del or ( Fn +) Backspace depending on your OS and settings. Multiselection

happens via dragging rectangles with the mouse or adding elements to the se-

lection by clicking them while holding down Ctrl .

KNIME Explorer: Shows a list of available workflows (also called workflow projects).

You can open a workflow by double-clicking it. A new workflow can be created

with a right-click in the Workflow Explorer followed by choosing New KNIME Workflow...

from the appearing context menu. Remember to save your workflow often with

the Ctrl + S shortcut.

Workflow Coach (since KNIME 3.2.1): Shows a list of suggested following nodes, based

on the last added/clicked nodes. When you are not sure which node to choose

next, you have a reasonable suggestion based on other users behavior there.

Connect them to the last node with a double-click.

Node Repository: Shows all nodes that are available in your KNIME installation. Ev-

ery plugin you install will provide new nodes that can be found here. The OpenMS

nodes can be found in Community Nodes OpenMS . Nodes for managing files (e.g.,

Input Files or Output Folders) can be found in Community Nodes GenericKnimeNodes .

You can search the node repository by typing the node name into the small text

box in the upper part of the node repository.

Outline: The Outline panel contains a small overview of the complete workflow. While

of limited use when working on a small workflow, this feature is very helpful as

soon as the workflows get bigger. You can adjust the zoom level of the explorer

by adjusting the percentage in the toolbar at the top of KNIME.

Console: In the console panel warning and error messages are shown. This panel will

provide helpful information if one of the nodes failed or shows a warning sign.

Node Description: As soon as a node is selected, the Node Description window will

show the documentation of the node including documentation for all its param-

eters and especially their in- and outputs, such that you know what types of data
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nodes may produce or expect. For OpenMS nodes you will also find a link to the

tool page of the online documentation.

2.4.4 Creating workflows

Workflows can easily be created by a right click in the Workflow Explorer followed by

clicking on New KNIME Workflow... .

2.4.5 Sharing workflows

To be able to share a workflow with others, KNIME supports the import and export of

complete workflows. To export a workflow, select it in the Workflow Explorer and se-

lect File Export KNIME Workflow... . KNIME will export workflows as a knwf file contain-

ing all the information on nodes, their connections, and their parameter configura-

tion. Thoseknwf files can again be imported by selecting File Import KNIME Workflow... .

Note: For your convenience we added all workflows discussed in this tuto-

rial to the Workflows folder on the USB Stick. Additionally, the workflow

files can be found on our GitHub repository. If you want to check your own

workflow by comparing it to the solution or got stuck, simply import the full

workflow from the corresponding knwf file and after that double-click it in

your KNIME Workflow repository to open it.

2.4.6 Duplicating workflows

In this tutorial, a lot of the workflows will be created based on the workflow from a

previous task. To keep the intermediate workflows, we suggest you create copies of

your workflows so you can see the progress. To create a copy of your workflow, save

it, close it and follow the next steps.

• Right click on the workflow you want to create a copy of in the Workflow Ex-

plorer and select Copy .

• Right click again somewhere on the workflow explorer and select Paste .

• This will create a workflow with same name as the one you copied with a (2)

appended.

• To distinguish them later on you can easily rename the workflows in the Work-

flow Explorer by right clicking on the workflow and selecting Rename .

Note: To rename a workflow it has to be closed, too.
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2.4.7 A minimal workflow

Let us now start with the creation of our very first, very simple workflow. As a first

step, we will gather some basic information about the data set before starting the

actual development of a data analysis workflow. This minimal workflow can also be

used to check if all requirements are met and that your system is compatible.

• Create a new workflow.

• Add an Input Filenode and an Output Foldernode (to be found in Community Nodes
GenericKnimeNodes IO and a FileInfonode (to be found in the category Community Nodes
OpenMS File Handling ) to the workflow.

• Connect the Input File node to the FileInfo node, and the first output port of

the FileInfo node to the Output Folder node.

Note: In case you are unsure about which node port to use, hovering

the cursor over the port in question will display the port name and what

kind of input it expects.

The complete workflow is shown in Figure 8. FileInfo can produce two different

kinds of output files.

• All nodes are still marked red, since we are missing an actual input file. Double-

click the Input File node and select Browse . In the file system browser select

Example_Data Introduction datasets tiny velos005614.mzML and click Open .

Afterwards close the dialog by clicking Ok .

Note:Make sure to use the “tiny” version this time, not “small”, for the

sake of faster workflow execution.

• The Input File node and the FileInfo node should now have switched to yel-

low, but the Output Folder node is still red. Double-click on the Output Folder

node and click on Browse to select an output directory for the generated data.

• Great! Your first workflow is now ready to be run. Press + F7 (shift key + F7;

or the button with multiple green triangles in the KNIME Toolbar) to execute

the complete workflow. You can also right click on any node of your workflow

and select Execute from the context menu.

• The traffic lights tell you about the current status of all nodes in your workflow.

Currently running tools show either a progress in percent or a moving blue bar,
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Figure 8: A minimal workflow calling FileInfo on a single file.

nodes waiting for data show the small word “queued”, and successfully exe-

cuted ones become green. If something goes wrong (e.g., a tool crashes), the

light will become red.

• In order to inspect the results, you can just right-click the Output Folder node

and select View: Open the output folder . You can then open the text file and inspect

its contents. You will find some basic information of the data contained in the

mzML file, e.g., the total number of spectra and peaks, the RT and m/z range,

and how many MS1 and MS2 spectra the file contains.

Workflows are typically constructed to process a large number of files automat-

ically. As a simple example, consider you would like to gather this information for

more than one file. We will now modify the workflow to compute the same informa-

tion on three different files and then write the output files to a folder.

• We start from the previous workflow.

• First we need to replace our single input file with multiple files. Therefore we

add the Input Files node from the category Community Nodes GenericKnimeNodes
IO .

• To select the files we double-click on the Input Files node and click on Add .

In the filesystem browser we select all three files from the directory Exam-

ple_Data Introduction datasets tiny. And close the dialog with Ok .

• We now add two more nodes: the ZipLoopStart and the ZipLoopEnd node from

the category Community Nodes GenericKnimeNodes Flow .

• Afterwards we connect the Input Files node to the first port of the ZipLoop-

Start node, the first port of the ZipLoopStart node to the FileInfo node, the

first output port of the FileInfo node to the first input port of the ZipLoopEnd

node, and the first output port of the ZipLoopEnd node to the Output Folder

node (NOT to the Output File). The complete workflow is shown in Figure 9

• The workflow is already complete. Simply execute the workflow and inspect the

output as before.
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Figure 9: A minimal workflow calling FileInfo on multiple files in a loop.

Figure 10: Workflow to visualize a list of SMILES strings and filter them by predefined substructures.

In case you had trouble to understand what ZipLoopStart and ZipLoopEnd do -

here is a brief explanation:

• The Input Files node passes a list of files to the ZipLoopStart node.

• The ZipLoopStart node takes the files as input, but passes the single files se-

quentially (that is: one after the other) to the next node.

• The ZipLoopEnd collects the single files that arrive at its input port. After all files

have been processed, the collected files are passed again as file list to the next

node that follows.

2.4.8 Digression: Working with chemical structures

Metabolomics analyses often involve working with chemical structures. Popular chem-

informatic toolkits such as RDKit [7] or CDK [8] are available as KNIME plugins and al-

low us to work with chemical structures directly from within KNIME. In particular, we

will use KNIME and RDKit to visualize a list of compounds and filter them by prede-

fined substructures. Chemical structures are often represented as SMILES (Simplified

molecular input line entry specification), a simple and compact way to describe com-

plex chemical structures as text. For example, the chemical structure of L-alanine can

be written as the SMILES string C[C@H](N)C(O)=O. As we will discuss later, all OpenMS

tools that perform metabolite identification will report SMILES as part of their result,

which can then be further processed and visualized using RDKit and KNIME.
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Perform the following steps to build the workflow shown in in Fig. 10. You will use

this workflow to visualize a list of SMILES strings and filter them by predefined sub-

structures:

• Add the node File Reader, open the node configuration dialog and select the

file smiles.csv. This file has been exported from the Human Metabolome

Database (HMDB) and contains the portion of the human metabolome that has

been detected and quantified. The file preview on the bottom of the dialog

shows that each compound is given by its HMDB accession, compound name,

and SMILES string. Click on the column header ’SMILES’ to change its properties.

Change the column type from ’string’ to ’smiles’ and close the dialog with Ok .

Afterwards the SMILES column will be visualized as chemical structures instead

of text directly within all KNIME tables.

• Add the node RDKit From Molecule and connect it to the File Reader. This node

will use the provided SMILES strings to add an additional column that is required

by RDKit.

• Add the node RDKit Functional Group Filter and open the node configuration

dialog. You can use this dialog to filter the compounds by any combination of

functional groups. In this case we want to find all compounds that contain at

least one aromatic carboxylic acid group. To do this, set this group as active and

choose ’>=’ and ’1’.

• Connect the first output port (Molecules passing the filter) to a CSV Writernode

to save the filtered metabolites to a file. Right click RDKit Functional Group

Filter and select the view ’Molecules passing the filter’ to inspect the selected

compounds in KNIME. How many compounds pass the chosen filter (see Fig. 11)?

2.4.9 Advanced topic: Meta nodes

Workflows can get rather complex and may contain dozens or even hundreds of nodes.

KNIME provides a simple way to improve handling and clarity of large workflows:

Meta Nodes allow to bundle several nodes into a single Meta Node.

Select multiple nodes (e.g. all nodes of the ZipLoop including the start

and end node). To select a set of nodes, draw a rectangle around them

with the left mouse button or hold Ctrl to add/remove single nodes

Task
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Figure 11: Resulting list of compounds that contains at least one aromatic carboxylic acid group.

from the selection. Pro-tip: There is a Select Loop option when you right-

click a node in a loop, that does exactly that for you. Then, open the con-

text menu (right-click on a node in the selection) and select Collapse into Meta Node .

Enter a caption for the Meta Node. The previously selected nodes are

now contained in the Meta Node. Double-clicking on the Meta Node will

display the contained nodes in a new tab window.

Freeze/wrap the meta node to let it behave like an encapsulated single

node. First select the Meta Node, open the context menu (right-click)

and select Meta Node Wrap . The differences between Meta Nodes and

their wrapped counterparts are marginal (and only apply when expos-

ing user inputs and workflow variables). Therefore we suggest to use

standard meta nodes to clean up your workflow and cluster common

subparts until you actually notice their limits.

Task

Undo the packaging. First select the (Wrapped) Meta Node, open the

context menu (right-click) and select (Wrapped) Meta Node Expand .

Task
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2.4.10 Advanced topic: R integration

KNIME provides a large number of nodes for a wide range of statistical analysis, ma-

chine learning, data processing, and visualization. Still, more recent statistical analy-

sis methods, specialized visualizations or cutting edge algorithms may not be covered

in KNIME. In order to expand its capabilities beyond the readily available nodes, ex-

ternal scripting languages can be integrated. In this tutorial, we primarily use scripts

of the powerful statistical computing language R. Note that this part is considered

advanced and might be difficult to follow if you are not familiar with R. In this case

you might skip this part.

R View (Table) allows to seamlessly include R scripts into KNIME. We will demon-

strate on a minimal example how such a script is integrated.

First we need some example data in KNIME, which we will generate us-

ing the Data Generator node. You can keep the default settings and

execute the node. The table contains four columns, each containing

random coordinates and one column containing a cluster number (Clus-

ter_0 to Cluster_3). Now place a R View (Table) node into the work-

flow and connect the upper output port of the Data Generator node

to the input of the R View (Table) node. Right-click and configure the

node. If you get an error message like ”Execute failed: R_HOME does

not contain a folder with name ’bin’.” or ”Execution failed: R Home is in-

valid.”: please change the R settings in the preferences. To do so open
File Preferences KNIME R and enter the path to your R installation

(the folder that contains the bin directory (e.g., C: Program Files R

R-3.4.3).

If you get an error message like: ”Execute failed: Could not find

Rserve package. Please install it in your R installation by running

”install.packages(’Rserve’)”.” You may need to run your R binary as ad-

ministrator (In windows explorer: right-click ”Run as administrator”) and

enter install.packages(’Rserve’) to install the package.

If R is correctly recognized we can start writing an R script. Consider

that we are interested in plotting the first and second coordinates and

color them according to their cluster number. In R this can be done in a

single line. In the R View (Table) text editor, enter the following code:

plot(x=knime.in$Universe_0_0, y=knime.in$Universe_0_1, main="Plotting column ←↩
Universe_0_0 vs. Universe_0_1", col=knime.in$"Cluster Membership")

Task
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Explanation: The table provided as input to the R View (Table)node

is available as R data.framewith name knime.in. Columns (also listed on

the left side of the R View window) can be accessed in the usual R way

by first specifying the data.frame name and then the column name (e.g.

knime.in$Universe_0_0). plot is the plotting function we use to gener-

ate the image. We tell it to use the data in column Universe_0_0 of the

dataframe object knime.in (denoted as knime.in$Universe_0_1) as x-

coordinate and the other column knime.in$Universe_0_1as y-coordinate

in the plot. main is simply the main title of the plot and col the column

that is used to determine the color (in this case it is the Cluster Mem-

bership column).

Now press the Eval script and Show plot buttons.

Note: Note that we needed to put some extra quotes around Cluster Mem-

bership. If we omit those, R would interpret the column name only up to the

first space (knime.in$Cluster) which is not present in the table and leads to

an error. Quotes are regularly needed if column names contain spaces, tabs

or other special characters like $ itself.
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3 Label-free quantification of peptides

3.1 Introduction

In this chapter, we will build a workflow with OpenMS / KNIME to quantify a label-free

experiment. Label-free quantification is a method aiming to compare the relative

amounts of proteins or peptides in two or more samples. We will start from the min-

imal workflow of the last chapter and, step-by-step, build a label-free quantification

workflow.

3.2 Peptide Identification

As a start, we will extend the minimal workflow so that it performs a peptide iden-

tification using the OMSSA [9] search engine. Since OpenMS version 1.10, OMSSA is

included in the OpenMS installation, so you do not need to download and install it

yourself.

• Let’s start by replacing the input files in our Input Files node by the three

mzML files in Example_Data Labelfree datasets lfq_spikein_dilution_1-

3.mzML. This is a reduced toy dataset where each of the three runs contains a

constant background of S. pyogenes peptides as well as human spike-in pep-

tides in different concentrations. [10]

• Instead of FileInfo, we want to perform OMSSA identification, so we simply re-

place the FileInfo node with the OMSSAAdapter node Community Nodes OpenMS
Identification , and we are almost done. Just make sure you have connected the

ZipLoopStart node with the in port of the OMSSAAdapter node.

• OMSSA, like most mass spectrometry identification engines, relies on search-

ing the input spectra against sequence databases. Thus, we need to introduce

a search database input. As we want to use the same search database for all of

our input files, we can just add a single Input File node to the workflow and

connect it directly with the OMSSAAdapter database port. KNIME will automati-

cally reuse this Input node each time a new ZipLoop iteration is started. In order

to specify the database, select Example_Data Labelfree databases

s_pyo_sf370_potato_human_target_decoy_with_contaminants.fasta, and we have

a very basic peptide identification workflow.

Note: You might also want to save your new identification workflow

under a different name. Have a look at Section 2.4.6 for information

on how to create copies of workflows.
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• The result of a single OMSSA run is basically a number of peptide-spectrum-

matches (PSM) with a score each, and these will be stored in an idXML file. Now

we can run the pipeline and after execution is finished, we can have a first look

at the results: just open the input files folder with a file browser and from there

open an mzML file in TOPPView.

• Here, you can annotate this spectrum data file with the peptide identification

results. Choose Tools Annotate with identification from the menu and select the

idXML file that OMSSAAdapter generated (it is located within the output direc-

tory that you specified when starting the pipeline).

• On the right, select the tab Identification view . Using this view, you can see all iden-

tified peptides and browse the corresponding MS2 spectra.

Note:Opening the output file of OMSSAAdapter (the idXML file) directly

is also possible, but the direct visualization of an idXML file is less use-

ful.

• The search results stored in the idXML file can also be read back into a KNIME

table for inspection and subsequent analyses: Add a TextExporter node from
Community Nodes OpenMS File Handling to your workflow and connect the output

port of your OMSSAAdapter (the same port your ZipLoopEnd is connected to) to

its input port. This tool will convert the idXML file to a more human-readable

text file which can also be read into a KNIME table using the IDTextReader node.

Add an IDTextReader node ( Community Nodes OpenMS Conversion ) after TextEx-

porter and execute it. Now you can right-click IDTextReader and select ID Table

to browse your peptide identifications.

• From here, you can use all the tools KNIME offers for analyzing the data in this

table. As a simple example, you could add a Histogram node (from category
Data Views ) node after IDTextReader, double-click it, select peptide_charge as

binning column, hit OK , and execute it. Right-clicking and selecting View: Histogram view

will open a plot showing the charge state distribution of your identifications.

In the next step, we will tweak the parameters of OMSSA to better reflect the

instrument’s accuracy. Also, we will extend our pipeline with a false discovery rate

(FDR) filter to retain only those identifications that will yield an FDR of < 1 %.

• Open the configuration dialog of OMSSAAdapter. The dataset was recorded us-

ing an LTQ Orbitrap XL mass spectrometer, so we can set the precursor mass

tolerance to a smaller value, say 5 ppm. Set precursor_mass_tolerance to 5 and

precursor_error_units to ppm.
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Note: Whenever you change the configuration of a node, the node

as well as all its successors will be reset to the Configured state (all

node results are discarded and need to be recalculated by executing

the nodes again).

• Setmax_precursor_charge to 5, in order to also search for peptides with charges

up to 5.

• Add Carbamidomethyl (C) as fixed modification and Oxidation (M) as variable

modification.

Note: To add a modification click on the empty value field in the con-

figuration dialog to open the list editor dialog. In the new dialog click
Add . Then select the newly added modification to open the drop down

list where you can select the correct modification.

• A common step in analyis is to search not only against a regular protein database,

but to also search against a decoy database for FDR estimation. The fasta file

we used before already contains such a decoy database. For OpenMS to know

which OMSSA PSM came from which part of the file (i.e. target versus decoy), we

have to index the results. To this end, extend the workflow with a PeptideIn-

dexer node Community Nodes OpenMS ID Processing . This node needs the idXML

as input as well as the database file.

Note: You can direct the files of an Input File node to more than just

one destination port.

• The decoys in the database are prefixed with “DECOY_”, so we have to set de-

coy_string to DECOY_ and decoy_string_position to prefix in the configuration

dialog of PeptideIndexer.

• Now we can go for the FDR estimation, which the FalseDiscoveryRate node will

calculate for us (you will find it in Community Nodes OpenMS ID Processing ). As we

have a combined search database and thus only one idXML per mzML we will

only use the in port of the FalseDiscoveryRate node.

• In order to set the FDR level to 1%, we need an IDFilternode from Community Nodes
OpenMS ID Processing . Configuring its parameter score → pep to 0.01 will do

the trick. The FDR calculations (embedded in the idXML) from the FalseDiscov-

eryRate node will go into the in port of the IDFilter node.
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• Execute your workflow and inspect the results using IDTextReader like you did

before. How many peptides did you identify at this FDR threshold?

Note: The finished identification workflow is now sufficiently complex

that we might want to encapsulate it in a Meta node. For this, select

all nodes inside the ZipLoop (including the Input File node) and right-

click to select Collapse into Meta node and name it ID. Meta nodes are use-

ful when you construct even larger workflows and want to keep an

overview.

Figure 12: OMSSA ID pipeline including FDR filtering.

3.2.1 Bonus task: identification using several search engines

Note: If you are ahead of the tutorial or later on, you can further improve

your FDR identification workflow by a so-called consensus identification us-

ing several search engines. Otherwise, just continue with section 3.3.

It has become widely accepted that the parallel usage of different search engines

can increase peptide identification rates in shotgun proteomics experiments. The

ConsensusID algorithm is based on the calculation of posterior error probabilities

(PEP) and a combination of the normalized scores by considering missing peptide se-

quences.

• Next to the OMSSAAdapter add a XTandemAdapter

Community Nodes OpenMS Identification node and set its parameters and ports anal-

ogously to the OMSSAAdapter. In XTandem, to get more evenly distributed scores,

we decrease the number of candidates a bit by setting the precursor mass tol-

erance to 5 ppm and the fragment mass tolerance to 0.1 Da.

• To calculate the PEP, introduce each a IDPosteriorErrorProbability Community Nodes
OpenMS ID Processing node to the output of each ID engine adapter node. This

will calculate the PEP to each hit and output an updated idXML.
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• To create a consensus, we must first merge these two files with a FileMerger

node Community Nodes GenericKnimeNodes Flow so we can then merge the corre-

sponding IDs with a IDMerger Community Nodes OpenMS File Handling .

• Now we can create a consensus identification with the ConsensusID Community Nodes
OpenMS ID Processing node. We can connect this to the PeptideIndexer and go

along with our existing FDR filtering.

Note: By default, X!Tandem takes additional enzyme cutting rules into

consideration (besides the specified tryptic digest). Thus for the tuto-

rial files, you have to set PeptideIndexer’s enzyme→ specificity param-

eter to none to accept X!Tandems non-tryptic identifications as well.

In the end the ID processing part of the workflow can be collapsed into a Meta node

to keep the structure clean (see Figure 13).

Figure 13: Complete consensus identification workflow.
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3.3 Quantification

Now that we have successfully constructed a peptide identification pipeline, we can

add quantification capabilities to our workflow.

• Add a FeatureFinderCentroidednode from Community Nodes OpenMS Quantitation

which gets input from the first output port of the ZipLoopStart node. Also, add

an IDMapper node (from Community Nodes OpenMS ID Processing ) which receives

input from the FeatureFinderCentroided node and the ID Meta node (or IDFil-

ter node if you haven’t used the Meta node). The output of the IDMapper is then

connected to an in port of the ZipLoopEnd node.

• FeatureFinderCentroided finds and quantifies peptide ion signals contained in

the MS1 data. It reduces the entire signal, i.e., all peaks explained by one and

the same peptide ion signal, to a single peak at the maximum of the chromato-

graphic elution profile of the monoisotopic mass trace of this peptide ion and

assigns an overall intensity.

• FeatureFinderCentroidedproduces a featureXML file as output, containing only

quantitative information of so-far unidentified peptide signals. In order to an-

notate these with the corresponding ID information, we need the IDMappernode.

• Run your pipeline and inspect the results of the IDMapper node in TOPPView.

Open the mzML file of your data to display the raw peak intensities.

• To assess how well the feature finding worked, you can project the features

contained in the featureXML file on the raw data contained in the mzML file. To

this end, open the featureXML file in TOPPView by clicking on File Open file and

add it to a new layer ( Open in New layer ). The features are now visualized on top

of your raw data. If you zoom in on a small region, you should be able to see the

individual boxes around features that have been detected (see Fig. 14). If you

hover over the the feature centroid (small circle indicating the chromatographic

apex of monoisotopic trace) additional information of the feature is displayed.

Note: The chromatographic RT range of a feature is about 30-60 s and

its m/z range around 2.5 m/z in this dataset. If you have trouble zoom-

ing in on a feature, select the full RT range and zoom only into the

m/z dimension by holding down Ctrl ( cmd on macOS) and repeatedly

dragging a narrow box from the very left to the very right.

• You can see which features were annotated with a peptide identification by first

selecting the featureXML file in the Layers window on the upper right side and
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Figure 14: Visualization of detected features (boxes) in TOPPView.

then clicking on the icon with the letters A, B and C on the upper icon bar. Now,

click on the small triangle next to that icon and select Peptide identification.

Figure 15: Extended workflow featuring peptide identification and quantification.

3.4 Combining quantitative information across several label-free

experiments

So far, we successfully performed peptide identification as well as quantification on

individual LC-MS runs. For differential label-free analyses, however, we need to iden-

tify and quantify corresponding signals in different experiments and link them to-

gether to compare their intensities. Thus, we will now run our pipeline on all three

available input files and extend it a bit further, so that it is able to find and link fea-

tures across several runs.

• To find features across several maps, we first have to align them to correct for

retention time shifts between the different label-free measurements. With the
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Figure 16: Complete identification and label-free quantification workflow.

MapAlignerPoseClustering in Community Nodes OpenMS Map Alignment , we can align

corresponding peptide signals to each other as closely as possible by applying

a transformation in the RT dimension.

Note: MapAlignerPoseClustering consumes several featureXML files

and its output should still be several featureXML files containing the

same features, but with the transformed RT values. In its configuration

dialog, make sure that OutputTypes is set to featureXML.

• With the FeatureLinkerUnlabeledQTnode in Community Nodes OpenMS Map Alignment ,

we can then perform the actual linking of corresponding features. Its output is

a consensusXML file containing linked groups of corresponding features across

the different experiments.

• Since the overall intensities can vary a lot between different measurements (for

example, because the amount of injected analytes was different), we apply the

ConsensusMapNormalizer in Community Nodes OpenMS Map Alignment as a last pro-

cessing step. Configure its parameters with setting algorithm_type to median. It

will then normalize the maps in such a way that the median intensity of all input

maps is equal.

• Finally, we export the resulting normalized consensusXML file to a csv format

using TextExporter. Connect its out port to a new Output Folder node.

Note: You can specify the desired column separation character in the

parameter settings (by default, it is set to “ ” (a space)). The output file

of TextExporter can also be opened with external tools, e.g., Microsoft

Excel, for downstream statistical analyses.
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3.4.1 Basic data analysis in KNIME

For downstream analysis of the quantification results within the KNIME environment,

you can use the ConsensusTextReader node in Community Nodes OpenMS Conversion in-

stead of the Output Folder node to convert the output into a KNIME table (indicated

by a triangle as output port). After running the node you can view the KNIME table

by right-clicking on the ConsensusTextReader and selecting Consensus Table . Every row

in this table corresponds to a so-called consensus feature, i.e., a peptide signal quan-

tified across several runs. The first couple of columns describe the consensus feature

as a whole (average RT and m/z across the maps, charge, etc.). The remaining columns

describe the exact positions and intensities of the quantified features separately for

all input samples (e.g., intensity_0 is the intensity of the feature in the first input file).

The last 11 columns contain information on peptide identification.

Figure 17: Simple KNIME data analysis example for LFQ.

• Now, let’s say we want to plot the log intensity distributions of the human spike-

in peptides for all input files. In addition, we will plot the intensity distributions

of the background peptides.

• As shown in Fig. 17, add a Row Splitternode ( Data Manipulation Row Filter ) after

ConsensusTextReader. Double-click it to configure. The human spike-in peptides

have accessions starting with “hum”. Thus, set the column to apply the test to:

accessions, select pattern matching as matching criterion, enter hum* into the

corresponding text field, and check the contains wild cards box. Press OK and

execute the node.

• Row Splitter produces two output tables: the first one contains all rows from

the input table matching the filter criterion, and the second table contains all

other rows. You can inspect the tables by right-clicking and selecting Filtered

and Filtered Out. The former table should now only contain peptides with a
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human accession, whereas the latter should contain all remaining peptides (in-

cluding unidentified ones).

• Now, since we only want to plot intensities, we can add a Column Filter node
Data Manipulation Column Filter , connect its input port to theFiltered output port

of the Row Filter, and open its configuration dialog. We could either manually

select the columns we want to keep, or, more elegantly, select Wildcard/Regex

Selection and enter intensity_? as the pattern. KNIME will interactively show

you which columns your pattern applies to while you’re typing.

• Since we want to plot log intensities, we will now compute the log of all intensity

values in our table. The easiest way to do this in KNIME is a small piece of R code.

Add an R Snippet node R after Column Filter and double-click to configure.

In the R Script text editor, enter the following code:

x <− knime.in # store copy of input table in x
x[x == 0] <− NA # replace all zeros by NA (= missing value)
x <− log10(x) # compute log of all values
knime.out <− x # write result to output table

• Now we are ready to plot! Add a Box Plot node Views after the R Snippet node,

execute it, and open its view. If everything went well, you should see a signifi-

cant fold change of your human peptide intensities across the three runs.

• In order to verify that the concentration of background peptides is constant in

all three runs, you can just copy and paste the three nodes after Row Splitter

and connect the duplicated Column Filter to the second output port (Filtered

Out) of Row Splitter, as shown in Fig. 17. Execute and open the view of your

second Box Plot.

• That’s it! You have constructed an entire identification and label-free quantifi-

cation workflow including a simple data analysis using KNIME!

3.5 Identification &Quantification of the iPRG2015 data with sub-

sequent MSstats analysis

Advanced downstream data analysis of quantitative mass spectrometry-based pro-

teomics data can be performed using MSstats [11]. This tool can be combined with

an OpenMS preprocessing pipeline (e.g. in KNIME). The OpenMS experimental de-

sign is used to present the data in an MSstats-conformant way for the analysis. Here,

we give an example how to utilize these resources when working with quantitative

36



label-free data. We describe how to use OpenMS and MSstats for the analysis of the

ABRF iPRG2015 dataset [12].

Note: Reanalysing the full dataset from scratch would take too long. In this

tutorial session, we will focus on just the conversion process and the down-

stream analysis.

3.5.1 Excursion MSstats

The R package MSstats can be used for statistical relative quantification of proteins

and peptides in mass spectrometry-based proteomics. Supported are label-free as

well as labeled experiments in combination with data-dependent, targeted and data-

independent acquisition. Inputs can be identified and quantified entities (peptides

or proteins) and the output is a list of differentially abundant entities, or summaries

of their relative abundance. It depends on accurate feature detection, identification

and quantification which can be performed e.g. by an OpenMS workflow.

In general MSstats can be used for data processing & visualization, as well as sta-

tistical modeling & inference. Please see [11] and http://msstats.org for further

information.

3.5.2 Dataset

The iPRG (Proteome Informatics Research Group) dataset from the study in 2015, as

described in [12], aims at evaluating the effect of statistical analysis software on the

accuracy of results on a proteomics label-free quantification experiment. The data is

based on four artificial samples with known composition (background: 200 ng S. cere-

visiae). These were spiked with different quantities of individual digested proteins,

whose identifiers were masked for the competition as yeast proteins in the provided

database (see Table 1).

Samples

Name Origin Molecular Weight 1 2 3 4

A Ovalbumin Egg White 45 KD 65 55 15 2
B Myoglobin Equine Heart 17 KD 55 15 2 65
C Phosphorylase b Rabbit Muscle 97 KD 15 2 65 55
D Beta-Glactosidase Escherichia Coli 116 KD 2 65 55 15
E Bovine Serum Albumin Bovine Serum 66 KD 11 0.6 10 500
F Carbonic Anhydrase Bovine Erythrocytes 29 KD 10 500 11 0.6

Table 1: Samples (background: 200 ng S. cerevisiae) with spiked-in proteins in different quantities
[fmols].
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3.5.3 Identification and Quantification

Figure 18: KNIME data analysis of iPRG LFQ data.

The iPRG LFQ workflow (Fig. 18) consists of an identification and a quantification part.

The identification is achieved by searching the computationally calculated MS2 spec-

tra from a sequence database (Input File node, here with the given database from

iPRG:

Example_Data iPRG2015 database

iPRG2015_target_decoy_nocontaminants.fasta)

against the MS2 from the original data (Input Files node with all mzMLs following

Example_Data iPRG2015 datasets JD_06232014_sample*.mzML) using the OMSSAAdapter.

Note: If you want to reproduce the results at home, you have to download

the iPRG data in mzML format and perform Peakpicking on it. Or convert

and pick the raw data with msconvert.

Afterwards the results are scored using the FalseDiscoveryRate node and filtered to

obtain only unique peptides (IDFilter) since MSstats does not support shared pep-

tides, yet. The quantification is achieved by the FeatureFinderCentroided, which per-

forms the feature detection on the samples (maps). In the end the quantification

results are combined with the filtered identification results (IDMapper). In addition, a

linear retention time alignment is performed (MapAlignerPoseClustering), followed

by the feature linking process (FeatureLinkerUnlabledQT). The ConsensusMapNormal-

izer is used to normalize the intensities via robust regression over a set of maps and

the IDConflictResolver assures that only one identification (best score) is associated

with a feature. The output of this workflow is a consensusXML file, which can now be

converted using the MSstatsConverter (see section 3.5.5).
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3.5.4 Experimental design

As mentioned before, the downstream analysis can be performed using MSstats. In

this case an experimental design has to be specified for the OpenMS workflow. The

structure of the experimental design used in OpenMS in case of the iPRG dataset is

specified in Table 2. An explanation of the variables can be found in Table 3.

Fraction_Group Fraction Spectra_Filepath Label Sample
1 1 Sample1-A 1 1
2 1 Sample1-B 1 2
3 1 Sample1-C 1 3
4 1 Sample2-A 1 4
5 1 Sample2-B 1 5
6 1 Sample2-C 1 6
7 1 Sample3-A 1 7
8 1 Sample3-B 1 8
9 1 Sample3-C 1 9
10 1 Sample4-A 1 10
11 1 Sample4-B 1 11
12 1 Sample4-C 1 12

Sample MSstats_Condition MSstats_BioReplicate
1 1 1
2 1 2
3 1 3
4 2 4
5 2 5
6 2 6
7 3 7
8 3 8
9 3 9
10 4 10
11 4 11
12 4 12

Table 2: OpenMS Experimental design for the iPRG2015 dataset.

The conditions are highly dependent on the type of experiment and on which kind of

analysis you want to perform. For the MSstats analysis the information which sample

belongs to which condition and if there are biological replicates are mandatory. This

can be specified in further condition columns as explained in Table 3. For a detailed

description of the MSstats-specific terminology, see their documentation e.g. in the

R vignette.
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variables value

Fraction_Group Index used to group fractions and source files.
Fraction 1st, 2nd, .., fraction. Note: All runs must have the same number of frac-

tions.
Spectra_Filepath Path to mzML files
Label label-free: always 1

TMT6Plex: 1...6
SILAC with light and heavy: 1..2

Sample Index of sample measured in the specified label X, in fraction Y of frac-
tion group Z.

Conditions Further specification of different conditions (e.g. MSstats_Condition;
MSstats_BioReplicate)

Table 3: Explanation of the column of the experimental design table

3.5.5 Conversion and downstream analysis

Conversion of the OpenMS-internal consensusXML format (which is an aggregation

of quantified and possibly identified features across several MS-maps) to a table (in

MSstats-conformant CSV format) is very easy. First, create a new KNIME workflow.

Then, run the MSstatsConverter node with a consensusXML and the manually created

(e.g. in Excel) experimental design as inputs (loaded via Input File nodes). The first

input can be found in

Example_Data iPRG2015 openmsLFQResults iPRG_lfq.consensusXML

This file was generated by using the Workflows openmsLFQ_iPRG2015.knwf work-

flow (seen in Fig. 18). The second input is specified in

Example_Data iPRG2015 experimental_design.tsv.

Adjust the parameters in the config dialog of the converter to match the given exper-

imental design file and to use a simple summing for peptides that elute in multiple

features (with the same charge state, i.e. m/z value).

parameter value

msstats_bioreplicate MSstats_Bioreplicate

msstats_condition MSstats_Condition

labeled_reference_peptides false

retention_time_summarization_method sum

The downstream analysis of the peptide ions with MSstats is performed in several

steps. These steps are reflected by several KNIME R nodes, which consume the out-

put of MSstatsConverter. The outline of the workflow is shown in Figure 19.
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Figure 19: MSstats analysis using KNIME. The individual steps (Preprocessing, Group Comparisons,
Result Data Renaming, and Export) are split among several consecutive nodes.

We load the file resulting from MSStatsConverter either by saving it with an Output

File node and reloading it with the File Reader. Or for advanced users, you can use

a URI Port to Variable node and use the variable in the File Reader config dialog

(v=? button) to read from the temporary file.

Preprocessing

The first node ( Table to R) loads MSstats plus the data from the previous KNIME

node and performs a preprocessing step on the input data. The inline R script (that

needs to be pasted into the config dialog of the node)

library(MSStats)
data <− knime.in
quant <− OpenMStoMSstatsFormat(data, removeProtein_with1Feature = FALSE)

allows further preparation of the data produced by MSstatsConverter before the ac-

tual analysis is performed. In this example, the lines with proteins, which were iden-

tified with only one feature, were retained. Alternatively they could be removed.

In the same node, most importantly, the following line:

processed.quant <− dataProcess(quant, censoredInt = 'NA')

transforms the data into a format that is understood by MSstats. Here, dataProcess

is one of the most important functions that the R package provides. The function

performs the following steps:

1. Logarithm transformation of the intensities

2. Normalization

3. Feature selection
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4. Missing value imputation

5. Run-level summarization

In this example here, we just state that missing intensity values are represented by

the ’NA’ string.

Group Comparison

The goal of the analysis is the determination of differentially-expressed proteins among

the different conditions C1-C4. We can specify the comparisons that we want to make

in a comparison matrix. For this, let’s consider the following example:
−1 1 0 0

−1 0 1 0

−1 0 0 1

0 −1 0 1

0 0 −1 1

 (3.1)

This matrix has the following properties:

• The number of rows equals the number of comparisons that we want to per-

form, the number of columns equals the number of conditions (here, column 1

refers to C1, column 2 to C2 and so forth).

• The entries of each row consist of exactly one 1 and one -1, the others must be

0.

• The condition with the entry 1 constitutes the enumerator of the log2 fold-

change. The one with entry -1 denotes the denominator. Hence, the first row

states that we want calculate log C2

C1
.

We can generate such a matrix in R using the following code snippet in (for example)

a new R to R node that takes over the R workspace from the previous node with all

its variables:

comparison1<−matrix(c(−1,1,0,0),nrow=1)
comparison2<−matrix(c(−1,0,1,0),nrow=1)
comparison3<−matrix(c(−1,0,0,1),nrow=1)
comparison4<−matrix(c(0,−1,1,0),nrow=1)
comparison5<−matrix(c(0,−1,0,1),nrow=1)
comparison6<−matrix(c(0,0,−1,1),nrow=1)
comparison <− rbind(comparison1, comparison2, comparison3, comparison4, comparison5, ←↩

comparison6)
row.names(comparison)<−c("C2−C1","C3−C1","C4−C1","C3−C2","C4−C2","C4−C3")
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Here, we assemble each row in turn, concatenate them at the end, and provide row

names for labeling the rows with the respective condition.

In MSstats, the group comparison is then performed with the following line:

test.MSstats <− groupComparison(contrast.matrix=comparison, data=processed.quant)

No more parameters need to be set for performing the comparison.

Result Processing

In a next R to R node, the results are being processed. The following code snippet:

test.MSstats.cr <− test.MSstats$ComparisonResult

# Rename spiked ins to A,B,C....
pnames <− c("A", "B", "C", "D", "E", "F")
names(pnames) <− c(
"sp|P44015|VAC2_YEAST",
"sp|P55752|ISCB_YEAST",
"sp|P44374|SFG2_YEAST",
"sp|P44983|UTR6_YEAST",
"sp|P44683|PGA4_YEAST",
"sp|P55249|ZRT4_YEAST"
)

test.MSstats.cr.spikedins <− bind_rows(
test.MSstats.cr[grep("P44015", test.MSstats.cr$Protein),],
test.MSstats.cr[grep("P55752", test.MSstats.cr$Protein),],
test.MSstats.cr[grep("P44374", test.MSstats.cr$Protein),],
test.MSstats.cr[grep("P44683", test.MSstats.cr$Protein),],
test.MSstats.cr[grep("P44983", test.MSstats.cr$Protein),],
test.MSstats.cr[grep("P55249", test.MSstats.cr$Protein),]
)
# Rename Proteins
test.MSstats.cr.spikedins$Protein <− sapply(test.MSstats.cr.spikedins$Protein, function(←↩

x) {pnames[as.character(x)]})
test.MSstats.cr$Protein <− sapply(test.MSstats.cr$Protein, function(x) {

x <− as.character(x)

if (x %in% names(pnames)) {

return(pnames[as.character(x)])
} else {
return("")
}
})

will rename the spiked-in proteins to A,B,C,D,E, and F and remove the names of other

proteins, which will be beneficial for the subsequent visualization, as for example

performed in Figure 20.
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Export

The last four nodes, each connected and making use of the same workspace from

the last node, will export the results to a textual representation and volcano plots

for further inspection. Firstly, quality control can be performed with the following

snippet:

qcplot <− dataProcessPlots(processed.quant, type="QCplot",
ylimDown=0,
which.Protein = 'allonly',
width=7, height=7, address=F)

The code for this snippet is embedded in the first output node of the workflow. The

resulting boxplots show the log2 intensity distribution across the MS runs.

The second node is an R View (Workspace) node that returns a Volcano plot which

displays differentially expressed proteins between conditions C2 vs. C1. The plot is

described in more detail in the following Result section. This is how you generate it:

groupComparisonPlots(data=test.MSstats.cr, type="VolcanoPlot",
width=12, height=12,dot.size = 2,ylimUp = 7,
which.Comparison = "C2−C1",
address=F)

The last two nodes export the MSstats results as a KNIME table for potential further

analysis or for writing it to a (e.g. csv) file. Note that you could also write output

inside the Rscript if you are familiar with it. Use the following for an R to Table node

exporting all results:

knime.out <− test.MSstats.cr

And this for an R to Table node exporting only results for the spike-ins:

knime.out <− test.MSstats.cr.spikedins

3.5.6 Result

An excerpt of the main result of the group comparison can be seen in Figure 20.

The Volcano plots show differently expressed spiked-in proteins. In the left plot,

which shows the fold-change C2-C1, we can see the proteins D and F (sp|P44983|UTR6_YEAST

and sp|P55249|ZRT4_YEAST) are significantly over-expressed in C2, while the proteins

B,C, and E (sp|P55752|ISCB_YEAST, sp|P55752|ISCB_YEAST, and sp|P44683|PGA4_YEAST)

are under-expressed. In the right plot, which shows the fold-change ratio of C3 vs. C2,

we can see the proteins E and C (sp|P44683|PGA4_YEAST and sp|P44374|SFG2_YEAST)
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Figure 20: Volcano plots produced by the Group Comparison in MSstats The dotted line indicates an
adjusted p-value threshold

over-expressed and the proteins A and F (sp|P44015|VAC2_YEASTand sp|P55249|ZRT4_YEAST)

under-expressed. The plots also show further differentially-expressed proteins, which

do not belong to the spiked-in proteins.

The full analysis workflow can be found under

Workflows MSstats_statPostProcessing_iPRG2015.knwf.
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4 Protein Inference

In the last chapter, we have successfully quantified peptides in a label-free experi-

ment. As a next step, we will further extend this label-free quantification workflow

by protein inference and protein quantification capabilities. This workflow uses some

of the more advanced concepts of KNIME, as well as a few more nodes containing R

code. For these reasons, you will not have to build it yourself. Instead, we have al-

ready prepared and copied this workflow to the USB sticks. Just import Workflows

> labelfree_with_protein_quantification.knwf into KNIME via the menu entry File
Import KNIME workflow Select file and double-click the imported workflow in order to

open it.

Before you can execute the workflow, you again have to correct the locations of

the files in the Input Files nodes (don’t forget the one for the FASTA database inside

the “ID” meta node). Try and run your workflow by executing all nodes at once.

4.1 Extending the LFQ workflow by protein inference and quan-

tification

We have made the following changes compared to the original label-free quantifica-

tion workflow from the last chapter:

• First, we have added a ProteinQuantifier node and connected its input port to

the output port of ConsensusMapNormalizer.

• This already enables protein quantification. ProteinQuantifier quantifies pep-

tides by summarizing over all observed charge states and proteins by summariz-

ing over their quantified peptides. It stores two output files, one for the quan-

tified peptides and one for the proteins.

• In this example, we consider only the protein quantification output file, which

is written to the first output port of ProteinQuantifier

• Because there is no dedicated node in KNIME to read back the ProteinQuantifier

output file format into a KNIME table, we have to use a workaround. Here, we

have added an additional URI Port to Variable node which converts the name

of the output file to a so-called “flow variable” in KNIME. This variable is passed

on to the next node CSV Reader, where it is used to specify the name of the input

file to be read. If you double-click on CSV Reader, you will see that the text field,

where you usually enter the location of the CSV file to be read, is greyed out.

Instead, the flow variable is used to specify the location, as indicated by the

small green button with the “v=?” label on the right.
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• The table containing the ProteinQuantifier results is filtered one more time in

order to remove decoy proteins. You can have a look at the final list of quantified

protein groups by right-clicking the Row Filter and selecting Filtered .

• By default, i.e., when the second input port protein_groups is not used, Protein-

Quantifier quantifies proteins using only the unique peptides, which usually re-

sults in rather low numbers of quantified proteins.

• In this example, however, we have performed protein inference using Fido and

used the resulting protein grouping information to also quantify indistinguish-

able proteins. In fact, we also used a greedy method in FidoAdapter (parame-

ter greedy_group_resolution) to uniquely assign the peptides of a group to the

most probable protein(s) in the respective group. This boosts the number of

quantifications but slightly raises the chances to yield distorted protein quanti-

ties.

• As a prerequisite for using FidoAdapter, we have added an IDPosteriorError-

Probabilitynode within the IDmeta node, between the XTandemAdapter (note

the replacement of OMSSA because of ill-calibrated scores) and PeptideIndexer.

We have set its parameter prob_correct to true, so it computes posterior proba-

bilities instead of posterior error probabilities (1 - PEP). These are stored in the

resulting idXML file and later on used by the Fido algorithm. Also note that we

excluded FDR filtering from the standard meta node. Harsh filtering before in-

ference impacts the calibration of the results. Since we filter peptides before

quantification though, no potentially random peptides will be included in the

results anyway.

• Next, we have added a third outgoing connection to our ID meta node and con-

nected it to the second input port of ZipLoopEnd. Thus, KNIME will wait until

all input files have been processed by the loop and then pass on the resulting

list of idXML files to the subsequent IDMerger node, which merges all identifi-

cations from all idXML files into a single idXML file. This is done to get a unique

assignment of peptides to proteins over all samples.

• Instead of the meta node Protein inference with FidoAdapter, we could have

just used a FidoAdapter node ( Community Nodes OpenMS ID Processing ). However,

the meta node contains an additional subworkflow which, besides calling Fi-

doAdapter, performs a statistical validation (e.g. (pseudo) receiver operating

curves; ROCs) of the protein inference results using some of the more advanced

KNIME and R nodes. The meta node also shows how to use MzTabExporter and

MzTabReader.
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4.2 Statistical validation of protein inference results

In the following, we will explain the subworkflow contained in the Protein inference

with FidoAdapter meta node.

4.2.1 Data preparation

For downstream analysis on the protein ID level in KNIME, it is again necessary to

convert the idXML-file-format result generated from FidoAdapter into a KNIME table.

• We use the MzTabExporter to convert the inference results from FidoAdapter to

a human readable, tab-separated mzTab file. mzTab contains multiple sections,

that are all exported by default, if applicable. This file, with its different sections

can again be read by the MzTabReader that produces one output in KNIME table

format (triangle ports) for each section. Some ports might be empty if a section

did not exist. Of course, we continue by connecting the downstream nodes with

the protein section output (second port).

• Since the protein section contains single proteins as well as protein groups, we

filter them for single proteins with the standard Row Filter.

4.2.2 ROC curve of protein ID

ROC Curves (Receiver Operating Characteristic curves) are graphical plots that visu-

alize sensitivity (true-positive rate) against fall-out (false positive rate). They are of-

ten used to judge the quality of a discrimination method like e.g., peptide or pro-

tein identification engines. ROC Curve already provides the functionality of drawing

ROC curves for binary classification problems. When configuring this node, select the

opt_global_target_decoy column as the class (i.e. target outcome) column. We want

to find out, how good our inferred protein probability discriminates between them,

therefore add

best_search_engine_score[1] (the inference engine score is treated like a peptide

search engine score) to the list of ”Columns containing positive class probabilities”.

View the plot by right-clicking and selecting View: ROC Curves . A perfect classifier has

an area under the curve (AUC) of 1.0 and its curve touches the upper left of the plot.

However, in protein or peptide identification, the ground-truth (i.e., which target

identifications are true, which are false) is usually not known. Instead, so called pseudo-

ROC Curves are regularly used to plot the number of target proteins against the false

discovery rate (FDR) or its protein-centric counterpart, the q-value. The FDR is ap-

proximated by using the target-decoy estimate in order to distinguish true IDs from

false IDs by separating target IDs from decoy IDs.
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4.2.3 Posterior probability and FDR of protein IDs

ROC curves illustrate the discriminative capability of the scores of IDs. In the case

of protein identifications, Fido produces the posterior probability of each protein as

the output score. However, a perfect score should not only be highly discriminative

(distinguishing true from false IDs), it should also be “calibrated” (for probability in-

dicating that all IDs with reported posterior probability scores of 95% should roughly

have a 5% probability of being false. This implies that the estimated number of false

positives can be computed as the sum of posterior error probabilities ( = 1 - poste-

rior probability) in a set, divided by the number of proteins in the set. Thereby a

posterior-probability-estimated FDR is computed which can be compared to the ac-

tual target-decoy FDR. We can plot calibration curves to help us visualize the quality of

the score (when the score is interpreted as a probability as Fido does), by comparing

how similar the target-decoy estimated FDR and the posterior probability estimated

FDR are. Good results should show a close correspondence between these two mea-

surements, although a non-correspondence does not necessarily indicate wrong re-

sults.

The calculation is done by using a simple R script in R snippet. First, the target

decoy protein FDR is computed as the proportion of decoy proteins among all signifi-

cant protein IDs. Then posterior probabilistic-driven FDR is estimated by the average

of the posterior error probability of all significant protein IDs. Since FDR is the prop-

erty for a group of protein IDs, we can also calculate a local property for each protein:

the q-value of a certain protein ID is the minimum FDR of any groups of protein IDs

that contain this protein ID. We plot the protein ID results versus two different kinds

of FDR estimates in R View(Table) (see Fig. 22).

Figure 21: The workflow of statistical analysis of protein inference results
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Figure 22: the pseudo-ROC Curve of protein IDs. The accumulated number of protein IDs is plotted
on two kinds of scales: target-decoy protein FDR and Fido posterior probability estimated FDR. The
largest value of posterior probability estimated FDR is already smaller than 0.04, this is because the
posterior probability output from Fido is generally very high.

50



5 Troubleshooting guide

This section will show you where you can turn to when you encounter any problems

with this tutorial or with our nodes in general. Please see the FAQ first. If your prob-

lem is not listed or the proposed solution does not work, feel free to leave us a mes-

sage at the means of support that you see most fit. If that is the case, please provide

us with as much information as you can. In an ideal case, that would be:

• Your operating system and its version (e.g. Windows 8, Ubuntu 14.04)

• Your KNIME version (e.g. KNIME 3.1.2 full, KNIME 3.1.1 core)

• If not full: Which update site did you use for the OpenMS plugin? Trunk (nightly-

builds) or Stable?

• Your OpenMS plugin version found under
Help Install New Software What is already installed?

• Other installations of OpenMS on your computer (e.g. from the independent

OpenMS installer, another KNIME instance etc.)

• The log of the error in KNIME and the standard output of the tool (see FAQ: How

to debug)

• Your description of what you tried to do and experienced instead

5.1 FAQ

5.1.1 How to debug KNIME and/or the OpenMS nodes?

• KNIME: Start with the normal log on the bottom right of KNIME. In general all

warnings and errors will be listed there. If the output is not helpful enough, try

to set the logging verbosity to the highest (DEBUG) under Preferences -> KNIME

-> Log file log level.

• OpenMS nodes: The first step should also be the log of KNIME. Additionally,

you can view the output and the errors of our tools by right-clicking on the node

and selecting
View: NODENAME Std Output/Error . This shows you the output of the OpenMS exe-

cutable that was called by that node. For advanced users, you can try to execute

the underlying executable in your
KNIME/plugins/de.openms.platform.arch.version/payload/bin folder, to see if the error is re-

producible outside of KNIME.
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You can look up temporary files that are created by OpenMS nodes not con-

nected to an Output or Viewer Node by right- clicking on a node and selecting

the corresponding output view for the output you want to have a look at. The

output views are located on the bottom of the menu that shows up after right-

clicking. Their icon is a magnifying glass on top of a data table. The names of the

output views in that menu may vary from node to node (usually a combination

of ”file”,”out”,”output” and optionally its possible extensions). For example for

the Input File node you can open the information on the output files by click-

ing on ”loaded file”. In any case, a hierarchy of file descriptions will show up. If

there are multiple files on that port they will be numbered (usually beginning

from 0). Expand the information for the file you want to see and copy its URI

(you might need to erase the ”file:” prefix). Now open it with an editor of your

choice. Be aware that temporary files are subject to deletion and are usually

only stored as long as they are actually needed. There is also a Debug mode for

the GKN nodes that keeps temporary files that can be activated under Prefer-

ences -> KNIME -> Generic KNIME Nodes -> Debug mode. For the single nodes

you can also increase the debug level in the configuration dialog under the ad-

vanced parameters. You can also specify a log file there, to save the log output

of a specific node on your file system.

5.1.2 General

Q: Can I add my own modifications to the Unimod.xml?

A: Unfortunately not very easy. This is an open issue since the selections are hard-

coded during creation of the tools. We included 10 places for dummy modifications

that can be entered in our Unimod.xml and selected in KNIME.

Q: I have problem XYZ but it also occurs with other nodes or generally in the KNIME

environment/GUI, what should I do?

A: This sounds like a general KNIME bug and we advise to search help directly at the

KNIME developers. They also provide a FAQ and a forum.

Q: After exporting and reading in results into a KNIME table (e.g. with a MzTabEx-

porter and MzTabReader combination) numeric values get rounded (e.g. from scien-

tific notation 4.5e-10 to zero) or are in a different representation than in the under-

lying exported file!

A: Please try a different table column renderer in KNIME. Open the table in question,

right-click on the header of an affected column and select another Available Renderer

by hovering and finally left-clicking.
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Q: I have checked all the configurations but KNIME complains that it can not find cer-

tain output Files (FileStoreObjects).

A: Sometimes KNIME/GKN has hiccups with multiple nodes with a same name, exe-

cuted at the same time in the same loop. We have seen that a simple save and restart

of KNIME usually solves the problem.

5.1.3 Platform-specific problems

Linux

Q: Whenever I try to execute an OpenMS node I get an error similar to these:

/usr/lib/x86_64-linux-gnu/libgomp.so.1: version ‘GOMP_4.0’ not found

/usr/lib/x86_64-linux-gnu/libstdc++.so.6: version ‘GLIBCXX_3.4.20’ not found

A: We currently build the binaries shipped in the OpenMS KNIME plugin with gcc 4.8.

We will try to extend our support for older compilers. Until then you either need

to upgrade your gcc compiler or at least the library that the tool complained about

or you need to build the binaries yourself (see OpenMS documentation) and replace

them in your KNIME binary folder

( YOURKNIMEFOLDER/plugins/de.openms.platform.architecture.version/payload/bin ).

Q: Why is my configuration dialog closing right away when I double-click or try to

configure it? Or why is my GUI responding so slow?

A: If you have any problems with the KNIME GUI or the opening of dialogues under

Linux you might be affected by a GTK bug. See the KNIME forum (e.g. here or here)

for a discussion and a possible solution. In short: set environment variable by calling

export SWT_GTK3=0 or edit knime.ini to make Eclipse use GTK2 by adding the follow-

ing two lines:

–launcher.GTK_version

2

macOS

Q: I have problems installing RServe in my local R installation for the R KNIME Exten-

sion:

A: If you encounter linker errors while running install.packages(”Rserve”) when using

an R installation from homebrew, make sure gettext is installed via homebrew and

you pass flags to its lib directory. See StackOverflow question 21370363.

Q: Although I Ctrl + Leftclick TOPPAS.app or TOPPView.app and accept the risk of a

downloaded application, the icon only shortly blinks and nothing happens:

53

https://tech.knime.org/forum/knime-general/ubuntu-1604-slow-performance
https://tech.knime.org/forum/knime-users/knime-300-crashes-after-splash-screen
http://stackoverflow.com/questions/21370363/link-error-installing-rcpp-library-not-found-for-lintl


A: It seems like your OS is not able to remove the quarantine flag. If you trust us,

please remove it yourself by typing the following command in your Terminal.app:
xattr -r -d com.apple.quarantine /Applications/OpenMS-2.3.0

Windows

Q: KNIME has problems getting the requirements for some of the OpenMS nodes on

Windows, what can I do?

A: Get the prerequisites installer here or install .NET3.5, .NET4 and VCRedist10.0 and

12.0 yourself.

5.1.4 Nodes

Q:Why is my XTandemAdapter printing empty or VERY few results, although I did not

use an e-value cutoff?

A: Due to a bug in OpenMS 2.0.1 the XTandemAdapter requires a default parameter

file. Give it the default configuration in
YOURKNIMEFOLDER/plugins/de.openms.platform.architecture.version/payload/share/
CHEMISTRY/XTandem_default_input.xml as a third input file. This should be resolved in

newer versions though, such that it automatically uses this file if the optional inputs

is empty. This should be solved in newer versions.

Q: Do MSGFPlusAdapter, LuciphorAdapter or SiriusAdapter generally behave differ-

ent/unexpected?

A: These are Java processes that are started underneath. For example they can not

be killed during cancellation of the node. This should not affect its performance,

however. Make sure you set the Java memory parameter in these nodes to a reason-

able value. Also MSGFPlus is creating several auxiliary files and accesses them during

execution. Some users therefore experienced problems when executing several in-

stances at the same time.

5.2 Sources of support

If your questions could not be answered by the FAQ, please feel free to turn to our

developers via one of the following means:

• File an issue on GitHub

• Write to the Mailing List

• Open a thread on the KNIME Community Contributions forum for OpenMS
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