
OpenMS Tutorial

The OpenMS Developers

Mathias Walzer, Timo Sachsenberg, Fabian Aicheler,

Marc Rurik, Johannes Veit,

Bludau Isabell, Patrick Pedrioli,

Julianus Pfeuffer, Xiao Liang,

Knut Reinert, and Oliver Kohlbacher

Creative Commons Attribution 4.0 International (CC BY 4.0)

Contents

1 General remarks 6

2 Getting started 7

2.1 Data conversion . 7

2.2 Data visualization using TOPPView . 7

2.3 Introduction to KNIME / OpenMS . 10

2.3.1 Install OpenMS using KNIME . 10

2.3.2 KNIME concepts . 12

2.3.3 Overview of the graphical user interface 13

2.3.4 Creating workflows . 15

2.3.5 Sharing workflows . 15

2.3.6 Duplicating workflows . 15

2.3.7 A minimal workflow . 16

2.3.8 Advanced topic: Meta nodes . 19

2.3.9 Advanced topic: R integration . 19

3 Label-free quantification 22

3.1 Introduction . 22

3.2 Peptide Identification . 22

3.2.1 Bonus task: identification using several search engines 25

3.3 Quantification . 27

3.4 Combining quantitative information across several label-free experiments . 28

3.4.1 Basic data analysis in KNIME . 30

4 Protein Inference 33

4.1 Extending the LFQ workflow by protein inference and quantification 33

4.2 Statistical validation of protein inference results 35

4.2.1 Data preparation . 35

4.2.2 ROC curve of protein ID . 35

4.2.3 Posterior probability and FDR of protein IDs 36

3

5 Metabolomics 38

5.1 Introduction . 38

5.2 Quantifying metabolites across several experiments 38

5.3 Identifying metabolites in LC-MS/MS samples 41

5.4 Convert your data into a KNIME table . 42

5.4.1 Bonus task: Visualizing data . 43

5.5 Downstream data analysis and reporting . 44

5.5.1 Data preparation ID . 44

5.5.2 Data preparation Quant . 44

5.5.3 Statistical analysis . 45

5.5.4 Interactive visualization . 46

5.5.5 Advanced visualization . 47

5.5.6 Data preparation for Reporting . 48

6 OpenSWATH 50

6.1 Introduction . 50

6.2 Installation of OpenSWATH . 50

6.3 Installation of mProphet . 50

6.4 Generating the Assay Library . 51

6.4.1 Generating TraML from transition lists 51

6.4.2 Appending decoys to a TraML . 53

6.5 OpenSWATH KNIME . 54

6.6 From the example dataset to real-life applications 55

7 An introduction to pyOpenMS 56

7.1 Introduction . 56

7.2 Installation . 56

7.2.1 Windows . 56

7.2.2 Mac OS X 10.10 . 56

7.2.3 Linux . 57

7.3 Build instructions . 57

7.4 Your first pyOpenMS tool: pyOpenSwathFeatureXMLToTSV 57

7.4.1 Basics . 58

4

7.4.2 Loading data structures with pyOpenMS 59

7.4.3 Converting data in the featureXML to a TSV 61

7.4.4 Putting things together . 62

7.4.5 Bonus task . 63

8 Quality control 64

8.1 Introduction . 64

8.2 Building a qcML file per run . 65

8.3 Adding brand new QC metrics . 68

8.4 Set QC metrics . 70

5

1 General remarks

• This handoutwill guide you through an introductory tutorial for theOpenMS/TOPP

software package [1].

• OpenMS [2] is a versatile open-source library for mass spectrometry data analy-

sis. Based on this library, we offer a collection of command-line tools ready to be

used by end users. These so-called TOPP tools (short for “The OpenMS Proteomics

Pipeline”) [3] can be understood as small building blocks of arbitrary complex data

analysis workflows.

• Inorder to facilitateworkflowconstruction,OpenMSwas integrated intoKNIME [4],

the Konstanz Information Miner, an open-source integration platform providing a

powerful and flexible workflow system combined with advanced data analytics, vi-

sualization, and report capabilities. Raw MS data as well as the results of data pro-

cessing using TOPP can be visualized using TOPPView [5].

• In this hands-on tutorial session, you will become familiar with some of the basic

functionalities of OpenMS/TOPP, TOPPView, and KNIME and learn how to use a

selection of TOPP tools used in the tutorial workflows.

• All data referenced in this tutorial can be found in the Example_Data folder that

came with this tutorial.

6

2 Getting started

Beforewe get startedwewill install OpenMS and KNIME using the installers provided on

the USB stick. Please choose the directory that matches your operating system and exe-

cute the installer. Note that these steps are not necessary if you use one of our laptops.

For example for Windows you call

• the OpenMS installer: Windows OpenMS-2.0_Win64_setup.exe

• the KNIME installer: Windows OpenMS-2.0-prerequisites-installer.exe

and Windows KNIME 2.12.0 Installer (64bit).exe

on Mac you call

• the OpenMS installer: Mac OpenMS-2.0.0_setup.dmg

• the KNIME installer: Mac knime_2.12.0.macosx.cocoa.x86_64.dmg

and follow the instructions.

2.1 Data conversion

Each MS instrument vendor has one or more formats for storing the acquired data. Con-

verting these data into an open format (preferably mzML) is the very first step when you

want to work with open-source mass spectrometry software. A freely available conver-

sion tool is ProteoWizard. The OpenMS installation package for Windows automatically

installs ProteoWizard, so you do not need to download and install it separately.

Please note that due to restrictions from the instrument vendors, file format con-

version for most formats is only possible on Windows systems, so exporting from the

acquisition PC connected to the instrument is usually the most convenient option. All

files used in this tutorial have already been converted tomzML by us, so you do not need

to do it yourself.

2.2 Data visualization using TOPPView

Visualizing the data is the first step in quality control, an essential tool in understanding

the data, and of course an essential step in pipeline development. OpenMS provides a

7

Figure 1: TOPPView, the graphical application for viewing mass spectra and analysis re-
sults. Top window shows a small region of a peak map. In this 2D representation of the
measured spectra, signals of eluting peptides are colored according to the raw peak in-
tensities. The lower window displays an extracted spectrum (=scan) from the peak map.
On the right side, the list of spectra can be browsed.

convenient viewer for some of the data: TOPPView.

Wewill guide you through someof thebasic features of TOPPView. Please familiarize

yourself with the key controls and visualizationmethods. Wewill make use of these later

throughout the tutorial. Let’s start with a first look at one of the files of our tutorial data

set:

• Start TOPPView (see Start-Menu or Applications on MacOS)

• Go to File Open File , navigate to the directory where you copied the contents of the
USBstick to, and select Example_Data Introduction datasets small velos005614.mzML

. This file contains a reduced LC-MS map (only a selected RT and m/z range was ex-

tracted using the TOPP tool FileFilter) of a label-free measurement of the human

8

platelet proteome recorded on an Orbitrap velos. The other two mzML files con-

tain technical replicates of this experiment. First, we want to obtain a global view

on the whole LC-MS map - the default option Map view 2D is the correct one and

we can click the Ok button.

• Play around.

• Three basic modes allow you to interact with the displayed data: scrolling, zooming

and measuring:

– Scroll mode

* Is activatedbydefault (thougheach loaded spectrafile is displayedzoomed

out first, so you do not need to scroll).

* Allows you to browse your data by moving around in RT and m/z range.

* When zoomed in, to scroll the spectra map, click-drag on the current view.

* Arrow keys can be used to scroll the view as well.

– Zoommode

* Zooming into the data: either mark an area in the current view with your

mouse while holding the left mouse button plus the ctrl key to zoom to

this area or use your mouse wheel to zoom in and out.

* All previous zoom levels are stored in a zoom history. The zoom history

can be traversed using ctrl + + or ctrl + - or the mouse wheel (scroll up

and down).

* Pressing the Backspace key zooms out to show the full LC-MS map (and

also resets the zoom history).

– Measure mode

* It is activated using the key.

* Press the left mouse button down while a peak is selected and drag the

mouse to another peak to measure the distance between peaks.

* This mode is implemented in the 1D and 2D mode only.

• Right click on your 2D map and select Switch to 3D view and examine your data in 3D

mode

9

• Go back to the 2D view. In 2D mode, visualize your data in different normalization

modes, use linear, percentage and log-view (icons on the upper left tool bar).

Note: On Apple OS X, due to a bug in one of the external libraries used by

OpenMS, you will see a small window of the 3D mode when switching to

2D. Close the 3D tab in order to get rid of it.

• InTOPPView you can also execute TOPP tools. Go to Tools Apply tool (whole layer) and
choose a TOPP tool (e.g., FileInfo) and inspect the results.

2.3 Introduction to KNIME / OpenMS

UsingOpenMS in combinationwith KNIME you can create, edit, open, save, and runwork-

flows combining TOPP tools with the powerful data analysis capabilities of KNIME.Work-

flows can be created conveniently in a graphical user interface. The parameters of all in-

volved tools can be edited within the application and are also saved as part of the work-

flow. Furthermore, KNIME interactively performs validity checks during the workflow

editing process, in order to make it more difficult to create an invalid workflow.

Throughoutmost of theparts of this tutorial youwill useKNIME to create andexecute

workflows. This first step is to make yourself familiar with KNIME.

2.3.1 Install OpenMS using KNIME

Before we can start with the tutorial we need to install all the required extensions for

KNIME.

First, we install some additional extensions that are required by our OpenMS nodes

or used in the Tutorials e.g. for visualization.

1. Click on Help Install New Software...

2. From the Work with: drop down list select http://update.knime.org/analytics-platform/2.12

3. Now select the following plugins from the KNIME & Extensions category

• KNIME Base Chemistry Types & Nodes

10

• KNIME Chemistry Add-Ons

• KNIME File Handling Nodes

• KNIME Interactive R Statistics Integration

• KNIME Math Expression (JEP)

• KNIME R Statistics Integration (Windows Binaries)

• KNIME Report Designer

• KNIME SVG Support

• KNIME XLS Support

• KNIME XML-Processing

4. From the Work with: drop down list select
http://tech.knime.org/update/community-contributions/trusted/2.12

5. Nowselect the followingplugin fromthe ”KNIMECommunityContributions - Chem-

informatics” category

• RDKit KNIME integration

6. Follow the instructions and after a restart of KNIME the dependencies will be in-

stalled.

You are now ready to install the OpenMS nodes.

1. Open KNIME.

2. Click on Help Install New Software...

3. From the Work with: drop down list select the
http://tech.knime.org/update/community-contributions/trusted/2.12

4. Select the OpenMS nodes in the category:

”KNIME Community Contributions - Bioinformatics & NGS” and click Next .

5. Follow the instructions and after a restart of KNIME theOpenMSnodeswill be avail-

able under “Community Nodes”.

11

2.3.2 KNIME concepts

A workflow is a sequence of computational steps applied to a single or multiple input

data sets to process and analyze the data. In KNIME such workflows are implemented

graphically by combining so-called nodes. A node represents a single analysis step in a

workflow. Nodes have input and output ports where the data enters the node or the

results are provided for other nodes after processing, respectively. KNIME distinguishes

between different port types, representing different types of data. The most common

representation of data in KNIME are tables (similar to an excel sheet). Ports that accept

tables are marked with a small triangle. For OpenMS we use a different port type, so

called file ports, representing complete files. Those ports are marked by a small grey

box. Dark grey boxes represent mandatory inputs and light grey boxes optional inputs.

A typical OpenMS workflow in KNIME can be divided in two conceptually different

parts:

• Nodes for signal and data processing, filtering and data reduction. Here, files are

passed between nodes. Execution times of the individual steps are longer as the

main computational steps are performed.

• Downstream statistical analysis and visualization. Here, tables are passed between

nodes.

Between file-based processing and table-based analysis a conversion node typically

performs the conversion from OpenMS results into KNIME tables.

Nodes can have three different states, indicated by the small traffic light below the

node.

• Inactive, failed, and not yet fully configured nodes are marked red.

• Configured but not yet executed nodes are marked yellow.

• Successfully executed nodes are marked green.

If the node execution failed the node will switch to the red state.

Most nodes will be configured as soon as all input ports are connected. For some

nodes additional parameters have to be provided that cannot be either guessed from the

12

Figure 2: Node configuration dialog of an OpenMS node.

data or filled with sensible defaults. In this case, of if you want to customize the default

configuration, you can open the configuration dialog of a nodewith a double-click on the

node. For OpenMS you will see a configuration dialog like the one shown in Figure 2.

Note: OpenMS distinguishes between normal parameters and advanced param-

eters. Advanced parameters are by default hidden from the users since they

should only rarely be customized. In case you want to have a look at the param-

eters or need to customize them in one of the tutorials you can show them by

clicking on the checkbox Show advanced parameter in the lower part of the dialog.

The dialog shows the individual parameters, their current value and type, and, in the

lower part of the dialog, the documentation for the currently selected parameter.

2.3.3 Overview of the graphical user interface

The graphical user interface (GUI) of KNIME consists of different components or so called

panels that are shown inFigure3. Wewill shortly introduce the individual panels and their

13

Figure 3: The KNIME workbench.

purposes below.

Workflow Editor: The workflow editor is the central part of the KNIME GUI. Here you as-

semble the workflow by adding nodes from the Node Repository via ”drag & drop”.

Nodes can be connected by clicking on the output port of one node and releasing

the mouse at the desired input port of the next node.

Workflow Explorer: Shows a list of available workflows (also called workflow projects).

You can open a workflow by double clicking it. A newworkflow can be created with

a right-click in the Workflow Explorer followed by selecting New KNIME Workflow... .

Node Repository: Shows all nodes that are available in your KNIME installation. Every

plugin you install will provide new nodes that can be found here. The OpenMS

nodes can be found in Community Nodes OpenMS . Nodes for managing files (e.g., In-

put Files or Output Folders) can be found in Community Nodes GenericKnimeNodes . You
can search the node repository by typing the node name into the small text box in

the upper part of the node repository.

Outline: The Outline panel contains a small overview of the complete workflow. While

14

of limited usewhenworking on a smallworkflow, this feature is very helpful as soon

as the workflows get bigger.

Console: In the console panel warning and error messages are shown. This panel will

provide helpful information if one of the nodes failed or shows a warning sign.

Node Description: As soon as a node is selected, the NodeDescriptionwindowwill show

the documentation of the node including documentation for all its parameters. For

OpenMSnodes youwill alsofinda link to the tool page in theonlinedocumentation.

2.3.4 Creating workflows

Workflows can easily be created by a right click in the Workflow Explorer followed by

clicking on New KNIME Workflow... .

2.3.5 Sharing workflows

To be able to share a workflow with others, KNIME supports the import and export of

complete workflows. To export a workflow, select it in the Workflow Explorer and se-

lect File Export KNIME Workflow... . KNIME will export workflows as a zip file containing all

the information on nodes, their connections, and their configuration. Those zip files can

again be imported by selecting File Import KNIME Workflow... .

Note: For your convenience we added all workflows discussed in this tutorial to

the Workflows folder. If you want to check your own workflow by comparing

it to the solution or got stuck, simply import the full workflow from the corre-

sponding zip file.

2.3.6 Duplicating workflows

During the tutorial a lot of the workflows will be created based on the workflow from a

previous task. To keep the intermediate workflowswe suggest you create copies of your

workflows so you can see the progress. To create a copy of your workflow follow the

next steps.

15

• Right click on the workflow you want to create a copy of in the Workflow Explorer

and select Copy .

• Right click again somewhere on the workflow explorer and select Paste .

• This will create a workflow with same name as the one you copied with a (2) ap-

pended.

• To distinguish them later on you can easily rename the workflows in the Workflow

Explorer by right clicking on the workflow and selecting Rename .

Note: To rename a workflow it has to be closed.

2.3.7 A minimal workflow

Let us now start with the creation of our very first, very simple workflow. As a first step,

we will gather some basic information about the data set before starting the actual de-

velopment of a data analysis workflow.

• Create a new workflow.

• Add an Input File node and anOutput Folder node (to be found in Community Nodes
GenericKnimeNodes IO andaFileInfonode (tobe found in the category Community Nodes
OpenMS File Handling) to the workflow.

• Connect the Input File node to the FileInfo node, and the first output port of the

FileInfo node to theOutput Folder node.

Note: In case you are unsure about which node port to use, hovering the

cursor over the port in question will display the port name and what kind

of input it expects.

The complete workflow is shown in Figure 4. FileInfo can produce two different

kinds of output files.

16

Figure 4: A minimal workflow calling FileInfo on a single file.

• All nodes are still marked red, since we are missing an actual input file. Double-

click the Input File node and select Browse . In the file system browser select

Example_Data Introduction datasets tiny velos005614.mzML and click Open .
Afterwards close the dialog by clicking Ok .

Note: Make sure to use the “tiny” version this time, not “small”, for the

sake of faster workflow execution.

• The Input File node and the FileInfo node should now have switched to yellow, but

the Output Folder node is still red. Double-click on the Output Folder node and

click on Browse to select an output directory for the generated data.

• Great! Your first workflow is now ready to be run. Press + F7 to execute the

completeworkflow. You canalso right clickonanynodeof yourworkflowand select
Execute from the context menu.

• The traffic lights tell you about the current status of all nodes in yourworkflow. Cur-

rently running tools show either a progress in percent or a moving blue bar, nodes

waiting for data show the small word “queued”, and successfully executed ones be-

come green. If something goes wrong (e.g., a tool crashes), the light will become

red.

• In order to inspect the results, you can just right-click the Output Folder node and

select View: Open the output folder . You can then open the text file and inspect its con-
tents. You will find some basic information of the data contained in the mzML file,

e.g., the total number of spectra and peaks, the RT and m/z range, and how many

MS1 and MS2 spectra the file contains.

Workflows are typically constructed to process a large number of files automatically.

As a simple example, consider you would like to gather this information for more than

17

one file. We will now modify the workflow to compute the same information on three

different files and then write the output files to a folder.

• We start from the previous workflow.

• First we need to replace our single input file with multiple files. Therefore we add

the Input Files node from the category Community Nodes GenericKnimeNodes IO .

• To select the files we double-click on the Input Files node and click on Add . In the
filesystem browser we select all three files from the directory Example_Data

Introduction datasets tiny. And close the dialog with Ok .

• We nowadd twomore nodes: the ZipLoopStart and the ZipLoopEnd node from the

category Community Nodes GenericKnimeNodes Flow .

• Afterwards we connect the Input Files node to the first port of the ZipLoopStart

node, the first port of the ZipLoopStart node to the FileInfo node, the first output

port of the FileInfo node to the first input port of the ZipLoopEnd node, and the

first output port of the ZipLoopEnd node to the Output Folder node (NOT to the

Output File). The complete workflow is shown in Figure 5

• The workflow is already complete. Simply execute the workflow and inspect the

output as before.

In case you had trouble to understand what ZipLoopStart and ZipLoopEnd do - here

is a brief explanation:

• The Input Files node passes a list of files to the ZipLoopStart node.

• The ZipLoopStart node takes the files as input, but passes the single files sequen-

tially (that is: one after the other) to the next node.

• The ZipLoopEnd collects the single files that arrive at its input port. After all files

havebeenprocessed, the collectedfiles arepassed again asfile list to thenext node

that follows.

18

Figure 5: A minimal workflow calling FileInfo on multiple files in a loop.

2.3.8 Advanced topic: Meta nodes

Workflows can get rather complex and may contain dozens or even hundreds of nodes.

KNIME provides a simple way to improve handling and clarity of large workflows:

Meta Nodes allow to bundle several nodes into a singleMeta Node.

Select multiple nodes (e.g. all nodes of the ZipLoop including the start and

end node). To select a set of nodes, draw a rectangle around them with

the left mouse button or hold Ctrl to add/remove single nodes from the

selection. Open the context menu (right-click on a node in the selection)

and select Collapse into Meta Node . Enter a caption for the Meta Node. The

previously selected nodes are now contained in the Meta Node. Double

clicking on the Meta Node will display the contained nodes in a new tab

window.

Task

Undo the packaging. First select the Meta Node, open the context menu

(right-click) and select Expand Meta Node .

Task

2.3.9 Advanced topic: R integration

KNIME provides a large number of nodes for a wide range of statistical analysis, machine

learning, data processing and visualization. Still, more recent statistical analysis meth-

ods, specialized visualizations or cutting edge algorithms may not be covered in KNIME.

In order to expand its capabilities beyond the readily available nodes, external scripting

19

languages can be integrated. In this tutorial, we primarily use scripts of the powerful sta-

tistical computing language R. Note that this part is considered advanced and might be

difficult to follow if you are not familiar with R. In this case you might skip this part.

R View (Table) allows to seamlessly includeR scripts intoKNIME.Wewill demonstrate

on a minimal example how such a script is integrated.

First we need some example data in KNIME, which we will generate using

the Data Generator node. You can keep the default settings and execute

the node. The table contains 4 columns, each containing random coordi-

nates and one column containing a cluster number (Cluster_0 to Cluster_3).

Now place a R View (Table) node into the workflow and connect the upper

output port of theData Generator node to the input of the R View (Table)

node. Right-click and configure the node.

If you get an error message like ”Execute failed: R_HOME does not con-

tain a folder with name ’bin’.”: please change the R settings in the prefer-

ences. To do so open File Preferences KNIME R and enter the path to your

R installation (the folder that contains the bin directory).

If R is correctly recognizedwecan startwriting anR script. Consider that

we are interested in plotting the first and second coordinates and color

them according to their cluster number. In R this can be done in a single

line.

In the R View (Table) text editor, enter the following code:

plot(x=knime.in$Universe_0_0, y=knime.in$Universe_0_1, main="Plotting column ←↩
Universe_0_0 vs. Universe_0_1", col=knime.in$"Cluster Membership")

Explanation: The table provided as input to the R View (Table) node

is available as R data.frame with name knime.in. Columns (also listed on

the left side of the R View window) can be accessed in the usual R way

by first specifying the data.frame name and then the column name (e.g.

knime.in$Universe_0_0). plot is the plotting function we use to gener-

ate the image. We tell it to use the data in column Universe_0_0 of the

Task

20

dataframeobjectknime.in (denotedasknime.in$Universe_0_1) as x-coordinate

and the other column knime.in$Universe_0_1 as y-coordinate in the plot.

main is simply the main title of the plot and col the column that is used to

determine the color (in this case it is the Cluster Membership column).

Now press the Eval script and Show plot buttons.

Note:Note thatweneeded toput someextraquotes aroundCluster Membership.

If we omit those, R would interpret the column name only up to the first space

(knime.in$Cluster)which is notpresent in the table and leads toanerror. Quotes

are regularly needed if column names contain spaces, tabs or other special char-

acters like $ itself.

21

3 Label-free quantification

3.1 Introduction

In this chapter, wewill build aworkflowwithOpenMS / KNIME to quantify a label-free ex-

periment. Label-free quantification is a method aiming to compare the relative amounts

of proteins or peptides in two or more samples. Wewill start from theminimal workflow

of the last chapter and, step-by-step, build a label-free quantitation workflow.

3.2 Peptide Identification

As a start, we will extend the minimal workflow so that it performs a peptide identifica-

tion using the OMSSA [6] search engine. Since OpenMS version 1.10, OMSSA is included

in the OpenMS installation, so you do not need to download and install it yourself.

• Let’s start by replacing the inputfiles in our Input Filesnodeby the threemzMLfiles

in Example_Data Labelfree datasets lfq_spikein_dilution_1-3.mzML. This is

a reduced toy datasetwhere each of the three runs contains a constant background

of S. pyogenes peptides as well as human spike-in peptides in different concentra-

tions. [7]

• Instead of FileInfo, we want to perform OMSSA identification, so we simply re-

place the FileInfo node with the OMSSAAdapter node Community Nodes OpenMS
Identification , andwearealmostdone. Justmake sure youhave connected theZipLoopStart

node with the in port of theOMSSAAdapter node.

• OMSSA, likemostmass spectrometry identification engines, relies on searching the

input spectra against sequence databases. Thus, we need to introduce a search

database input. As we want to use the same search database for all of our input

files, we can just add a single Input File node to the workflow and connect it di-

rectly with theOMSSAAdapter database port. KNIME will automatically reuse this

Input node each time a new ZipLoop iteration is started. In order to specify the

database, select Example_Data Labelfree databases

s_pyo_sf370_potato_human_target_decoy_with_contaminants.fasta, andwehave

a very basic peptide identification workflow.

22

Note: Youmight alsowant to save your new identificationworkflowunder

a different name. Have a look at Section 2.3.6 for information on how to

create copies of workflows.

• The result of a singleOMSSA run is basically anumberofpeptide-spectrum-matches

(PSM) with a score each, and these will be stored in an idXML file. Now we can run

the pipeline and after execution is finished, we can have a first look at the results:

just open the input files folder with a file browser and from there open an mzML

file in TOPPView.

• Here, you can annotate this spectrum data file with the peptide identification re-

sults. Choose Tools Annotate with identification from the menu and select the idXML

file that OMSSAAdapter generated (it is located within the output directory that

you specified when starting the pipeline).

• On the right, select the tab Identification view . Using this view, you can see all identi-
fied peptides and browse the corresponding MS2 spectra.

Note: Opening the output file of OMSSAAdapter (the idXML file) directly

is also possible, but the direct visualization of an idXML file is less useful.

• The search results stored in the idXML file can also be read back into a KNIME ta-

ble for inspection and subsequent analyses: Add a TextExporter Community Nodes
OpenMS File Handling node to your workflow and connect the output port of your

OMSSAAdapter (the same port your ZipLoopEnd is connected to) to its input port.

This tool will convert the idXML file to a more human-readable text file which can

alsobe read into aKNIME tableusing the IDTextReadernode. Addan IDTextReader

node Community Nodes OpenMS Conversion after TextExporter and execute it. Now

you can right-click IDTextReader and select ID Table to browse your peptide identi-

fications.

• Fromhere, you canuse all the tools KNIMEoffers for analyzing thedata in this table.

As a simpleexample, you couldaddaHistogram Data Views nodeafter IDTextReader,
double-click it, select peptide_charge as binning column, hit OK , and execute it.

23

Right-clicking and selecting View: Histogram view will open a plot showing the charge

state distribution of your identifications.

In the next step, we will tweak the parameters of OMSSA to better reflect the instru-

ment’s accuracy. Also, we will extend our pipeline with a false discovery rate (FDR) filter

to retain only those identifications that will yield an FDR of < 1 %.

• Open the configuration dialog ofOMSSAAdapter. The dataset was recorded using

an LTQOrbitrap XLmass spectrometer, so we can set the precursor mass tolerance

to a smaller value, say 10 ppm. Set precursor_mass_tolerance to 10 and

precursor_mass_tolerance_unit_ppm to true.

Note: Whenever you change the configuration of a node, the node as well

as all its successors will be reset to the Configured state.

• Set max_precursor_charge to 5, in order to also search for peptides with charges

up to 5.

• Add Carbamidomethyl (C) as fixed modification and Oxidation (M) as variable mod-

ification.

Note: To add amodification click on the empty value field in the configura-

tion dialog to open the list editor dialog. In the new dialog click Add . Then
select the newly addedmodification to open the drop down list where you

can select the correct modification.

• A common step in analyis is to search not only against a regular protein database,

but to also search against a decoy database for FDR estimation. The fasta file we

used before already contains such a decoy database. For OpenMS to know which

OMSSA PSM came from which part of the file (i.e. target versus decoy), we have

to index the results. Therefore extend the workflow with a PeptideIndexer node
Community Nodes OpenMS ID Processing . This node needs the idXML as input as well

as the database file.

24

Note: You can direct the files of an Input File node to more than just one

destination port.

• Thedecoys in the database are prefixedwith “REV_”, sowehave to set decoy_string

to REV_ and prefix to true in the configuration dialog of PeptideIndexer.

• Nowwe can go for the FDR estimation, which the FalseDiscoveryRate nodewill cal-

culate for us Community Nodes OpenMS ID Processing . As we have a combined search

database and thus only one idXML per mzML we will only use the in port of the

FalseDiscoveryRate node.

• In order to set the FDR level to 1%, we need an IDFilter node from Community Nodes
OpenMS ID Processing . Configuring its parameter score → pep to 0.01 will do the

trick. The FDR calculations (embedded in the idXML) from the FalseDiscoveryRate

node will go into the in port of the IDFilter node.

• Execute your workflow and inspect the results using IDTextReader like you did be-

fore. How many peptides did you identify at this FDR threshold?

Note: Thefinished identificationworkflow isnowsufficiently complex that

we might want to encapsulate it in a Meta node. For this, select all nodes

inside the ZipLoop (including the Input File node) and right-click to select
Collapse into Meta node and name it ID. Meta nodes are useful when you con-

struct even larger workflows and want to keep an overview.

3.2.1 Bonus task: identification using several search engines

Note: If you are ahead of the tutorial or later on, you can further improve your

FDR identification workflow by a so-called consensus identification using sev-

eral search engines. Otherwise, just continue with section 3.3.

It has become widely accepted that the parallel usage of different search engines can

increase peptide identification rates in shotgun proteomics experiments. The Consen-

susID algorithm is based on the calculation of posterior error probabilities (PEP) and a

combination of the normalized scores by considering missing peptide sequences.

25

NodeE1 NodeE2

NodeE3

NodeE4 NodeE5

NodeE6

NodeE7 NodeE8 NodeE9

InputEFiles ZipLoopStart

OMSSAAdapter

ZipLoopEnd OutputEFolder

InputEFile

PeptideIndexer FalseDiscoveryRate IDFilter

NodeE1 NodeE2

NodeE3

NodeE4 NodeE5

NodeE6

NodeE7 NodeE8 NodeE9

InputEFiles ZipLoopStart

OMSSAAdapter

ZipLoopEnd OutputEFolder

InputEFile

PeptideIndexer FalseDiscoveryRate IDFilter

Figure 6: OMSSA ID pipeline including FDR filtering.

• Next to theOMSSAAdapter add a XTandemAdapter
Community Nodes OpenMS Identification node and set its parameters and ports analo-

gously to theOMSSAAdapter.

• To calculate thePEP, introduce each a IDPosteriorErrorProbability Community Nodes
OpenMS ID Processing node to the output of each ID engine adapter node. This will

calculate the PEP to each hit and output an updated idXML.

• To create a consensus, we must first merge these two files with a FileMerger node
Community Nodes GenericKnimeNodes Flow so we can then merge the corresponding

IDs with a IDMerger Community Nodes OpenMS File Handling .

• Nowwecan createa consensus identificationwith theConsensusID Community Nodes
OpenMS ID Processing node. We can connect this to the PeptideIndexer and go

along with our existing FDR filtering.

Note:Bydefault, X!Tandemtakes additional enzymecutting rules into con-

sideration (besides the specified tryptic digest). Thus you have to set Pep-

tideIndexer’s enzyme→ specificityparameter to semi to acceptX!Tandems

semi tryptic identifications as well.

26

NodeE1 NodeE2

NodeE3

NodeE4 NodeE5

NodeE6

NodeE7 NodeE8 NodeE9

NodeE11

NodeE12

NodeE13

NodeE14 NodeE15 NodeE16

InputEFiles ZipLoopStart

OMSSAAdapter

ZipLoopEnd OutputEFolder

InputEFile

PeptideIndexer FalseDiscoveryRate IDFilter

XTandemAdapter

IDPosteriorErrorProbability

IDPosteriorErrorProbability

FileMerger IDMerger ConsensusID

NodeE1 NodeE2

NodeE3

NodeE4 NodeE5

NodeE6

NodeE7 NodeE8 NodeE9

NodeE11

NodeE12

NodeE13

NodeE14 NodeE15 NodeE16

InputEFiles ZipLoopStart

OMSSAAdapter

ZipLoopEnd OutputEFolder

InputEFile

PeptideIndexer FalseDiscoveryRate IDFilter

XTandemAdapter

IDPosteriorErrorProbability

IDPosteriorErrorProbability

FileMerger IDMerger ConsensusID

Figure 7: Complete consensus identification workflow.

3.3 Quantification

Now that we have successfully constructed a peptide identification pipeline, we can add

quantification capabilities to our workflow.

• Add a FeatureFinderCentroided node Community Nodes OpenMS Quantitation which

gets input fromthefirst outputportof theZipLoopStartnode. Also, addan IDMapper

node Community Nodes OpenMS ID Processing whichgets input fromtheFeatureFinderCentroided

node and the ID Meta node (or IDFilter node if you haven’t used the Meta node).

The output of the IDMapper is then connected to the ZipLoopEnd node.

• FeatureFinderCentroided finds and quantifies peptide ion signals contained in the

MS1 data. It reduces the entire signal, i.e., all peaks explained by one and the same

peptide ion signal, to a single peak at themaximumof the chromatographic elution

profile of the monoisotopic mass trace of this peptide ion and assigns an overall

intensity.

• FeatureFinderCentroided produces a featureXML file as output, containing only

quantitative information of so-far unidentified peptide signals. In order to anno-

tate these with the corresponding ID information, we need the IDMapper node.

• Run your pipeline and inspect the results of the IDMapper node in TOPPView.

• In order to assess howwell the feature findingworked, you can project the features

contained in the featureXML file on the raw data contained in the mzML file. In

27

TOPPView choose File Open file and select the mzML file corresponding to your

featureXML file in Example_Data Labelfree datasets. In the dialog that pops

up, select Open in New layer . Zoom in until you see boxes (found features) around

the peptide signals in the raw data.

Note: The RT range is very narrow. Thus, select the full RT range and zoom

only into the m/z dimension by holding down CTRL (CMD on Mac) and re-

peatedly dragging a narrow box from the very left to the very right.

• You can see which features were annotated with a peptide identification by first

selecting the featureXMLfile in the Layerswindowon the upper right side and then

clicking on the icon with the letters A, B and C on the upper icon bar. Now, click on

the small triangle next to that icon and select Peptide identification.

InputFfiles NodeF2

NodeF3

NodeF4 CollectFIDFresults
forFmanualFinspection

Database NodeF7 NodeF8 NodeF9

NodeF11 NodeF12

CollectFmappedFfeatureXML
forFmanualFinspection

InputFFiles ZipLoopStart

OMSSAAdapter

ZipLoopEnd OutputFFolder

InputFFile PeptideIndexer FalseDiscoveryRate IDFilter

FeatureFinderCentroided IDMapper

OutputFFolder

InputFfiles NodeF2

NodeF3

NodeF4 CollectFIDFresults
forFmanualFinspection

Database NodeF7 NodeF8 NodeF9

NodeF11 NodeF12

CollectFmappedFfeatureXML
forFmanualFinspection

InputFFiles ZipLoopStart

OMSSAAdapter

ZipLoopEnd OutputFFolder

InputFFile PeptideIndexer FalseDiscoveryRate IDFilter

FeatureFinderCentroided IDMapper

OutputFFolder

Figure 8: Extended workflow featuring peptide identification and quantification.

3.4 Combining quantitative information across several label-free exper-

iments

So far, we successfully performed peptide identification as well as quantification on in-

dividual LC-MS runs. For differential label-free analyses, however, we need to identify

and quantify corresponding signals in different experiments and link them together to

compare their intensities. Thus, we will now run our pipeline on all three available input

files and extend it a bit further, so that it is able to find and link features across several

runs.

28

Input5files Node5z

Node53

Node54

Collect5ID5results
for5manual5inspection

Database Node57 Node58 Node59

Node5TT Node5Tz

Collect5mapped5featureXML
for5manual5inspection

Node5T4

Node5T5

Node5T6

Node5T7

Final5results

Input5Files ZipLoopStart

OMSSAAdapter

ZipLoopEnd

Output5Folder

Input5File PeptideIndexer FalseDiscoveryRate IDFilter

FeatureFinderCentroided IDMapper

Output5Folder

MapAlignerPoseClustering

FeatureLinkerUnlabeledQT

ConsensusMapNormalizer

TextExporter

Output5Folder

Input5files Node5z

Node53

Node54

Collect5ID5results
for5manual5inspection

Database Node57 Node58 Node59

Node5TT Node5Tz

Collect5mapped5featureXML
for5manual5inspection

Node5T4

Node5T5

Node5T6

Node5T7

Final5results

Input5Files ZipLoopStart

OMSSAAdapter

ZipLoopEnd

Output5Folder

Input5File PeptideIndexer FalseDiscoveryRate IDFilter

FeatureFinderCentroided IDMapper

Output5Folder

MapAlignerPoseClustering

FeatureLinkerUnlabeledQT

ConsensusMapNormalizer

TextExporter

Output5Folder

Figure 9: Complete identification and label-free quantification workflow.

• To find features across several maps, we first have to align them to correct for

retention time shifts between the different label-free measurements. With the

MapAlignerPoseClustering Community Nodes OpenMS Map Alignment , we canalign cor-
responding peptide signals to each other as closely as possible by applying a trans-

formation in the RT dimension.

Note:MapAlignerPoseClustering consumes several featureXML files and

its output should still be several featureXML files containing the same

features, but with the transformed RT values. In its configuration dialog,

make sure that OutputTypes is set to featureXML.

• With the FeatureLinkerUnlabeledQT node Community Nodes OpenMS Map Alignment ,
we can then perform the actual linking of corresponding features. Its output is a

consensusXML file containing linked groups of corresponding features across the

different experiments.

• Since the overall intensities can vary a lot between different measurements (for

example, because the amount of injected analytes was different), we apply the

ConsensusMapNormalizer Community Nodes OpenMS Map Alignment as a last process-
ing step. Configure its parameters with setting algorithm_type to median. It will

then normalize the maps in such a way that the median intensity of all input maps

is equal.

• Finally, we export the resulting normalized consensusXMLfile to a csv format using

TextExporter. Connect its out port to a newOutput Folder node.

29

Note: You can specify the desired column separation character in the pa-

rameter settings (by default, it is set to “ ” (a space)). The output file of

TextExporter can also be opened with external tools, e.g., Microsoft Ex-

cel, for downstream statistical analyses.

3.4.1 Basic data analysis in KNIME

For downstream analysis of the quantification results within the KNIME environment,

you can use the ConsensusTextReader node Community Nodes OpenMS Conversion instead

of theOutput Folder node to convert the output into a KNIME table (indicated by a trian-

gle as output port). After running the node you can view theKNIME table by right clicking

on the ConsensusTextReader and selecting Consensus Table . Every row in this table corre-

sponds to a so-called consensus feature, i.e., a peptide signal quantified across several

runs. The first couple of columns describe the consensus feature as a whole (average RT

and m/z across the maps, charge, etc.). The remaining columns describe the exact po-

sitions and intensities of the quantified features separately for all input samples (e.g.,

intensity_0 is the intensity of the feature in the first input file). The last 11 columns con-

tain information on peptide identification.

Figure 10: Simple KNIME data analysis example for LFQ.

• Now, let’s say we want to plot the log intensity distributions of the human spike-in

peptides for all input files. In addition, wewill plot the intensity distributions of the

background peptides.

30

• As shown in Fig. 10, add a Row Splitter node Data Manipulation Row Filter after

ConsensusTextReader. Double-click it to configure. The human spike-in peptides

have accessions starting with “hum”. Thus, set the column to test to accessions,

select pattern matching as matching criterion, enter hum* into the corresponding

text field, and check the contains wild cards box. Press OK and execute the node.

• Row Splitter produces two output tables: the first one contains all rows from the

input table matching the filter criterion, and the second table contains all other

rows. You can inspect the tables by right-clicking and selecting Filtered and Filtered

Out. The former table should now contain only peptides with a human accession,

whereas the latter should contain all remaining peptides (including unidentified

ones).

• Now, since we only want to plot intensities, we can add a Column Filter node
Data Manipulation Column Filter , connect its input port to the Filtered output port

of the Row Filter, and open its configuration dialog. We could either manually se-

lect the columns wewant to keep, or, more elegantly, selectWildcard/Regex Selec-

tion and enter intensity_? as the pattern. KNIME will interactively show you which

columns your pattern applies to while you’re typing.

• Since we want to plot log intensities, we will now compute the log of all intensity

values in our table. The easiest way to do this in KNIME is a small piece of R code.

Add anR Snippet node R afterColumn Filter and double-click to configure. In the

R Script text editor, enter the following code:

x <− knime.in # store copy of input table in x
x[x == 0] <− NA # replace all zeros by NA (= missing value)
x <− log10(x) # compute log of all values
knime.out <− x # write result to output table

• Nowwe are ready to plot! Add aBox Plot node Data Views after the R Snippet node,

execute it, and open its view. If everything went well, you should see a significant

fold change of your human peptide intensities across the three runs.

• In order to verify that the concentration of background peptides is constant in all

31

three runs, you can just copy and paste the three nodes after Row Splitter and con-

nect the duplicated Column Filter to the second output port (Filtered Out) of Row

Splitter, as shown in Fig. 10. Execute and open the view of your second Box Plot.

• That’s it! Youhave constructed an entire identification and label-free quantification

workflow including a simple data analysis using KNIME!

Note: For further inspiration youmightwant to takea lookat themoreadvanced

KNIME data analysis examples in the metabolomics tutorial.

32

4 Protein Inference

In the last chapter, we have successfully quantified peptides in a label-free experiment.

As a next step, we will further extend this label-free quantification workflow by protein

inference and protein quantification capabilities. This workflow uses some of the more

advanced concepts of KNIME, as well as a few more nodes containing R code. For these

reasons, you will not have to build it yourself. Instead, we have already prepared and

copied this workflow to the USB sticks. Just import Workflows > Protein Inference >

protein_inference.zip intoKNIMEvia File Import KNIME workflow Select archive file anddouble-
click the imported workflow in order to open it.

Before you can execute the workflow, you again have to correct the locations of the

files in the Input Files nodes (don’t forget the one for the FASTA database inside the “ID”

meta node). Try and run your workflow.

4.1 Extending the LFQworkflow by protein inference and quantification

We have made the following changes compared to the original label-free quantification

workflow from the last chapter:

• First, we have added a ProteinQuantifier node and connected its input port to the

output port of ConsensusMapNormalizer.

• This already enables protein quantification. ProteinQuantifier quantifies peptides

by summarizing over all observed charge states and proteins by summarizing over

their quantifiedpeptides. It stores twooutputfiles, one for thequantifiedpeptides

and one for the proteins.

• In this example, we consider only the protein quantification output file, which is

written to the first output port of ProteinQuantifier

• Because there is no dedicated node in KNIME to read back the ProteinQuantifier

output file format into a KNIME table, we have to use a workaround. Here, we have

added an additionalURI Port to Variable nodewhich converts the name of the out-

put file to a so-called “flow variable” in KNIME. This variable is passed on to the next

node CSV Reader, where it is used to specify the name of the input file to be read.

33

If you double-click on CSV Reader, you will see that the text field, where you usu-

ally enter the location of the CSV file to be read, is greyed out. Instead, the flow

variable is used to specify the location, as indicated by the small green button with

the “v=?” label on the right.

• The table containing the ProteinQuantifier results is filtered one more time in or-

der to remove decoy proteins. You can have a look at the final list of quantified

protein groups by right-clicking the Row Filter and selecting Filtered .

• By default, i.e., when the second input port protein_groups is not used, Protein-

Quantifier quantifies proteins using only the unique peptides, which usually results

in rather low numbers of quantified proteins.

• In this example, however, we have performedprotein inference using Fido andused

the resulting protein grouping information to also quantify indistinguishable pro-

teins

• As aprerequisite for usingFidoAdapter,wehaveaddedan IDPosteriorErrorProbability

node within the ID meta node, between OMSSAAdapter and PeptideIndexer. We

have set its parameter prob_correct to true, so it computes posterior probabilities

instead of posterior error probabilities (1 - PEP). These are stored in the resulting

idXML file and later on used by the Fido algorithm.

• Next, we have added a third outgoing connection to our ID meta node and con-

nected it to the second input port of ZipLoopEnd. Thus, KNIME will wait until all

input files have been processed by the loop and then pass on the resulting list

of idXML files to the subsequent IDMerger node, which merges all identifications

from all idXML files into a single idXML file.

• Instead of the meta node Protein inference with FidoAdapter, we could have just

usedaFidoAdapternode Community Nodes OpenMS ID Processing . However, themeta

node contains an additional subworkflow which, besides calling FidoAdapter, per-

formsa statistical validationof theprotein inference results using someof themore

advanced KNIME nodes.

34

4.2 Statistical validation of protein inference results

In the following,wewill explain the subworkflowcontained in theProtein inference with

FidoAdaptermeta node.

4.2.1 Data preparation

For downstream analysis on the protein ID level in KNIME, it is again necessary to convert

the idXML-file-format result generated from FidoAdapter into a KNIME table.

• By setting proteins_only to true in TextExporter, only the protein IDs are exported.

• As the built-in table file reader IDTextReader only reads peptide hits, we have to

use URI Port to Variable which collects the URIs from a URI port object and puts

them into variables.

• However, doing this will cause missing column information in the converted KNIME

table. Open the File Viewer and check what each column stands for, filter away

unused columns, such as sequence, coverage and rank in the Column Filter node.

Add the column names manually in Column Rename.

4.2.2 ROC curve of protein ID

ROC Curves (Receiver Operating Characteristic curves) are graphical plots that visualize

sensitivity (true-positive rate) against fall-out (false positive rate). They are often used

to judge the quality of a discriminationmethod like e.g., peptide or protein identification

engines. ROC Curve already provides the functionality of drawing ROC curves for binary

classification problems. Before applying this node, an extra columnwith the class values

(target and decoy proteins) has to be appended in the Rule engine node.

In protein or peptide identification, the ground-truth (i.e., which target identifications

are true, which are false) is usually not known. Instead, so called pseudo-ROC Curves

are regularly used to plot the number of target proteins against the false discovery rate

(FDR). The FDR is approximatedbyusing the target-decoy estimate in order todistinguish

true IDs from false IDs by separating target IDs from decoy IDs.

35

4.2.3 Posterior probability and FDR of protein IDs

ROC curves illustrate the discriminative capability of the scores of IDs. In the case of pro-

tein identifications, Fido produces the posterior probability of each protein as the output

score. However, a perfect score should not only be highly discriminative (distinguishing

true from false IDs), it should also be “calibrated” (for probability indicating that all IDs

with reported posterior probability scores of 95% should roughly of 5% probability be

false. This implies that the estimated number of false positives can be computed as the

sum of posterior error probability (= 1 - posterior probability), further an posterior prob-

ability estimated FDR is also possible to be computed. Therefore, we can plot calibration

curves to help us visualize the quality of the score (when the score is interpreted as a

probability as Fido does), by comparing how similar the target-decoy estimated FDR and

theposterior probability estimatedFDRare. Good results should showa close correspon-

dence between these two measurements.

The calculation is done by using a simple R script in R snippet. First, the target de-

coy protein FDR is computed as the proportion of decoy proteins among all significant

protein IDs. Then posterior probabilistic-driven FDR is estimated by the average of the

posterior error probability of all significant protein IDs. Since FDR is the property for

a group of protein IDs, we can also calculate a local property: the q-value of a certain

protein ID by the minimum value of FDRs of any groups of protein IDs that contain this

protein ID. We plot the protein ID results versus two different kinds of FDR estimates in

R View(Table) (see Figure 12).

Figure 11: The workflow of statistical analysis of protein inference results

36

Figure 12: the pseudo-ROC Curve of protein IDs. The accumulated number of protein
IDs is plotted on two kinds of scales: target-decoy protein FDR and Fido posterior proba-
bility estimated FDR. The largest value of posterior probability estimated FDR is already
smaller than 0.04, this is because the posterior probability output from Fido is generally
very high.

37

5 Metabolomics

5.1 Introduction

Quantitation and identification of chemical compounds are basic tasks in metabolomic

studies. In this tutorial session we construct a UPLC-MS based, label-free quantitation

and identification workflow. Following quantitation and identification we then perform

statistical downstream analysis to detect quantitation values that differ significantly be-

tween two conditions. This approach can, for example, be used to detect biomarkers.

Here, we use two spike-in conditions of a dilution series (0.5 mg/l and 10.0 mg/l, male

blood background, measured in triplicates) comprising seven isotopically labeled com-

pounds. The goal of this tutorial is to detect and quantify these differential spike-in com-

pounds against the complex background.

5.2 Quantifying metabolites across several experiments

For themetabolite quantificationwe choose an approach similar to the one used for pep-

tides, but this time based on the OpenMS FeatureFinderMetabo method. This feature

finder again collects peak picked data into individual mass traces. The reason why we

need a different feature finder for metabolites lies in the step after trace detection:

the aggregation of isotopic traces belonging to the same compound ion into the same

feature. Compared to peptides with their averagine model, small molecules have very

different isotopic trace distributions. To group small molecule mass traces correctly, an

aggregation model tailored to small molecules is thus needed.

• Create a new workflow called for instance ”Metabolomics”.

• Add a Input Files node and configure it with all mzML files from Example_Data

Metabolomics datasets.

• Add a ZipLoopStart node and connect the Input Files node to the first port of the

ZipLoopStart node.

• Add a FeatureFinderMetabo node (from Community Nodes OpenMS Quantitation and

connect the first output port of the ZipLoopStart to the FeatureFinderMetabo.

38

• For an optimal result adjust the following settings. Please note that some of these

are advanced parameters.

parameter value

algorithm→ common→ chrom_fwhm 8.0

algorithm→mtd→ trace_termination_criterion sample_rate

algorithm→mtd→min_trace_length 3.0

algorithm→mtd→max_trace_length 600.0

algorithm→ epd→width_filtering off

• Add a ZipLoopEnd node and connect the output of the FeatureFinderMetabo to

the first port of the ZipLoopEnd node.

To facilitate the collectionof features corresponding to the samecompound ionacross

different samples, an alignment of the samples’ feature maps along retention time is of-

ten helpful. In addition to local, small-scale elution differences, one can often see con-

stant retention time shifts across large sections between samples. We can use linear

transformations to correct for these large scale retention differences. This brings the

majority of corresponding compound ions close to each other. Finding the correct corre-

sponding ions is then faster and easier, aswe don’t have to search as far around individual

features.

• After theZipLoopEndnodeaddaMapAlignerPoseClusteringnode (Community Nodes
OpenMS Map Alignment), set its Output Type to featureXML, and adjust the follow-

ing settings

parameter value

algorithm→max_num_peaks_considered −1

algorithm→ superimposer→mz_pair_max_distance 0.005

algorithm→ superimposer→ num_used_points 10000

algorithm→ pairfinder→ distance_RT→max_difference 20.0

algorithm→ pairfinder→ distance_MZ→max_difference 20.0

algorithm→ pairfinder→ distance_MZ→ unit ppm

39

The next step after retention time correction is the grouping of corresponding fea-

tures in multiple samples. In contrast to the previous alignment, we assume no linear

relations of features across samples. The used method is tolerant against local swaps in

elution order.

• After theMapAlignerPoseClustering add a FeatureLinkerUnlabeledQT

(Community Nodes OpenMS Map Alignment) and adjust the following settings

parameter value

algorithm→ distance_RT→max_difference 40.0

algorithm→ distance_MZ→max_difference 20.0

algorithm→ distance_MZ→ unit ppm

• After the FeatureLinkerUnlabeledQT add a TextExporter node (Community Nodes
OpenMS File Handling).

• Add an Output Folder node and configure it with an output directory where you

want to store the resulting files.

• Run the pipeline and inspect the output.

You shouldfinda single, tab-separatedfile containing the informationonwheremetabo-

lites were found and with which intensities. You can also add Output Folder nodes at

different stages of the workflow and inspect the intermediate results (e.g., identified

metabolite features for each input map). The complete workflow can be seen in Fig-

ure 13. In the following section we will try to identify those metabolites.

Mass0trace0extractionLoad0mzML0input
files

Retention0time0correction0and0linking

Node06Node012 Node013 Node029Node097 Node098Node0106 Node0107

FeatureLinkerUnlabeledQTZipLoopStart ZipLoopEnd MapAlignerPoseClusteringInput0Files TextExporterFeatureFinderMetabo Output0Folder

Mass0trace0extractionLoad0mzML0input
files

Retention0time0correction0and0linking

Node06Node012 Node013 Node029Node097 Node098Node0106 Node0107

FeatureLinkerUnlabeledQTZipLoopStart ZipLoopEnd MapAlignerPoseClusteringInput0Files TextExporterFeatureFinderMetabo Output0Folder

Figure 13: Label-free quantification workflow for metabolites

40

5.3 Identifying metabolites in LC-MS/MS samples

At the current state we found several metabolites in the individual maps but so far don’t

know what they are. To identify metabolites OpenMS provides multiple tools, including

search by mass: the AccurateMassSearch node searches observed masses against the

Human Metabolome Database (HMDB)[8, 9, 10]. We start with the workflow from the

previous section (see Figure 13).

• AddaFileConverternodeandconnect theoutputof theFeatureLinkerUnlabeledQT

to the incoming port.

• Open the Configure dialog of the FileConverter and select the tab ”OutputTypes”.

In the drop down list for FileConverter.1.out select ”featureXML”.

• Add an AccurateMassSearch node and connect the output of the FileConverter to

the first port of the AccurateMassSearch.

• Add four Input File nodes and configure them with the following files

– Example_Data Metabolomics databases PositiveAdducts.tsv

This file specifies the list of adducts that are considered in the positive mode.

Each line contains the formula and charge of an adduct separated by a semi-

colon (e.g. M+H;1+). The mass of the adduct is calculated automatically.

– Example_Data Metabolomics databases NegativeAdducts.tsv

This file specifies the list of adducts that are considered in the negative mode

analogous to the positive mode.

– Example_Data Metabolomics databases HMDBMappingFile.tsv

This file contains information from a metabolite database in this case from

HMDB. It has three (or more) tab-separated columns: mass, formula, and iden-

tifier(s). This allows for an efficient search by mass.

– Example_Data Metabolomics databases HMDB2StructMapping.tsv

This file contains additional information about the identifiers in the mapping

file. It has four tab-separated columns that contain the identifier, name, SMILES,

and INCHI. These will be included in the result file. The identifiers in this file

must match the identifiers in the HMDBMappingFile.tsv.

41

• In the same order as they are given above connect them to the remaining input

ports of the AccurateMassSearch node.

• Add anOutput Folder node and connect the first output port of the

AccurateMassSearch node to theOutput Folder.

The result of the AccurateMassSearch node is in the mzTab format [11] so you can

easily open it in a text editor or import it into Excel or KNIME, which we will do in the

next section. The complete workflow from this section is shown in Figure 14.

Mass9trace9extractionLoad9mzML9input
files

Retention9time9correction9and9linking

Structure9mapping99files

Identification9using9accurate9mass
search9

Node96Node9EC Node9EO Node9C9Node997 Node998

Node999

Node9EZ5

Node9EZ6 Node9EZ7

Negative
Adducts

Positive9
Adducts

HMDB9C9Struct9
Mapping

HMDB9Mapping9
File

FeatureLinkerUnlabeledQTZipLoopStart ZipLoopEnd MapAlignerPoseClusteringInput9Files TextExporter

FileConverter

AccurateMassSearch

FeatureFinderMetabo Output9Folder

Input9File

Input9File

Input9File

Input9File

Mass9trace9extractionLoad9mzML9input
files

Retention9time9correction9and9linking

Structure9mapping99files

Identification9using9accurate9mass
search9

Node96Node9EC Node9EO Node9C9Node997 Node998

Node999

Node9EZ5

Node9EZ6 Node9EZ7

Negative
Adducts

Positive9
Adducts

HMDB9C9Struct9
Mapping

HMDB9Mapping9
File

FeatureLinkerUnlabeledQTZipLoopStart ZipLoopEnd MapAlignerPoseClusteringInput9Files TextExporter

FileConverter

AccurateMassSearch

FeatureFinderMetabo Output9Folder

Input9File

Input9File

Input9File

Input9File

Figure 14: Label-free quantification and identification workflow for metabolites

5.4 Convert your data into a KNIME table

The result fromtheTextExporternodeaswell as the result fromtheAccurateMassSearch

node are files while standard KNIME nodes display and processes only KNIME tables. To

convert thesefiles intoKNIMEtablesweneed twodifferentnodes. For theAccurateMassSearch

results we use theMzTabReader node (Community Nodes OpenMS Conversion mzTab), for

42

the result of theTextExporterweuse theConsensusTextReader (Community Nodes OpenMS
Conversion).
When executed, both nodes will import the OpenMS files and provide access to the

data as KNIME tables. You can now easily combine both tables using the Joiner node

(Data Manipulation Column Split & Combine) and configuring it to match the m/z and reten-

tion time values of the respective tables. The full workflow is shown in Figure 15.

Figure 15: Label-free quantification and identification workflow for metabolites that
loads the results into KNIME and joins the tables.

5.4.1 Bonus task: Visualizing data

Now that you have your data in KNIME you should try to get a feeling for the capabilities

of KNIME.

Checkout theMolecule Type Castnode (Chemistry Translators) togetherwith
subsequent cheminformatics nodes (e.g. RDKit FromMolecule (Community Nodes

RDKit Converters)) to render the structural formula contained in the result

table.

Task

43

Havea lookat theColumn Filternode to reduce the table to the interesting

columns, e.g., only the Ids, chemical formula, and intensities.

Task

Try to compute and visualize the m/z and retention time error of the dif-

ferent elements of the consensus features.

Task

5.5 Downstream data analysis and reporting

In this part of the metabolomics session we take a look at more advanced downstream

analysis and theuseof the statistical programming languageR.As laidout in the introduc-

tion we try to detect a set of spike-in compounds against a complex blood background.

As there aremanyways to perform this type of analysis we provide a completeworkflow.

Import theworkflowfrom Workflows metabolite_analysis.zip inKNIME:
File Import KNIME Workflow...

Task

The section below will guide you in your understanding of the different parts of the

workflow. Once you understood the workflow you should play around and be creative.

Maybe create a novel visualization in KNIME or R? Do some more elaborate statistical

analysis? Feel free to experiment and show us your results if you like. Note that some

basic R knowledge is required to fully understand the processing in R Snippet nodes.

5.5.1 Data preparation ID

This part is analogous to what you did for the simple metabolomics pipeline.

5.5.2 Data preparation Quant

The first part is identical to what you did for the simplemetabolomics pipeline. Addition-

ally, we convert zero intensities into NA values and remove all rows that contain at least

44

oneNA value from the analysis. We do this using a very simpleR Snippet and subsequent

Missing Value filter node.

Inspect the R Snippet by double-clicking on it. The KNIME table that is

passed toanR Snippetnode is available inRas adata.framenamedknime.in.

The result of this node will be read from the data.frame knime.out after

the script finishes. Try to understand and evaluate parts of the script (Eval

Selection). In this dialog you can also print intermediary results using for

example the R command head() or cat() to the Console pane.

Task

5.5.3 Statistical analysis

After we linked features across all maps, we want to identify features that are signifi-

cantly deregulated between the two conditions. We will first scale and normalize the

data, then perform a t-test, and finally correct the obtained p-values for multiple testing

using Benjamini-Hochberg. All of these steps will be carried out in individual R Snippet

nodes.

• Double-click on the firstR Snippet node labeled ”log scaling” to open theR Snippet

dialog. In the middle you will see a short R script that performs the log scaling. To

perform the log scaling we use a so-called regular expression (grepl) to select all

columns containing the intensities in the six maps and take the log2 logarithm.

• The output of the log scaling node is also used to draw a boxplot that can be used

to examine the structure of the data. Since we only want to plot the intensities in

the different maps (and not m/z or rt) we first use a Column Filter node to keep

only the columns that contain the intensities. We connect the resulting table to a

Box Plot node which draws one box for every column in the input table. Right-click

and select View: Box Plot .

• The median normalization is performed in a similar way to the log scaling. First

we calculate the median intensity for each intensity column, then we subtract the

median from every intensity.

45

• Open the Box Plot connected to the normalization node and compare it to the box

plot connected to the log scaling node to examine the effect of themedian normal-

ization.

• To perform the t-test we defined the two groups wewant to compare. Thenwe call

the t-test for every consensus feature unless it has missing values. Finally we save

the p-values and fold-changes in two new columns named p-value and FC.

• The Numeric Row Splitter is used to filter less interesting parts of the data. In this

case we only keep columns where the fold-change is≥ 2.

• We adjust the p-values for multiple testing using Benjamini-Hochberg and keep all

consensus features with a q-value ≤ 0.01 (i.e. we target a false-discovery rate of

1%).

5.5.4 Interactive visualization

KNIME supports multiple nodes for interactive visualization with interrelated output.

The nodes used in this part of theworkflow exemplify this concept. They further demon-

strate how figures with data dependent customization can be easily realized using basic

KNIME nodes. Several simple operations are concatenated in order to enable an interac-

tive volcano plot.

• We first log-transform fold changes and p-values in the R Snippet node. We then

append columns noting interesting features (concerning fold change and p-value).

• With this information, we can use various Manager nodes (Data Views Property) to
emphasize interesting data points. The configuration dialogs allow us to select

columns to change color, shape or size of data points dependent on the column

values.

• The Scatter Plot node (Data Views) enables interactive visualization of the logarith-
mized values as a volcano plot: the log-transformed values can be chosen in the

‘Column Selection’ tab of the plot view. Data points can be selected in the plot and

HiLited via the menu option. HiLiteing transfers to all other interactive nodes con-

nected to the same data table. In our case, selection and HiLiteing will also occur in

the Interactive Table node (Data Views).

46

• Output of the interactive table can then be filtered via the HiLite menu tab. For

example, we could restrict shown rows to points HiLited in the volcano plot.

Inspect the nodes of this section. Customize your visualization andpossibly

try to visualize other aspects of your data.

Task

5.5.5 Advanced visualization

RDependencies: This section requires that the R packages ggplot2 and ggbiplot are both

installed. ggplot2 is part of the KNIME R Statistics Integration (Windows Binaries) in-

stalled during the tutorial setup section, ggbiplot however is not. In case that you use

an R installation where one or both of them are not yet installed, add an R Snippet node

and double-click to configure. In the R Script text editor, enter the following code:

#Include the next line if you also have to install ggplot2:
install.packages("ggplot2")
#Include the following lines to install ggbiplot:
install.packages("devtools")
library(devtools)
install_github("vqv/ggbiplot")

Press Eval script to execute the script.

Even though the basic capabilities for (interactive) plots in KNIME are valuable for

initial data exploration, professional looking depiction of analysis results often relies on

dedicated plotting libraries. The statistics language R supports the addition of a large

variety of packages, including packages providing extensive plotting capabilities. This

part of the workflow shows how to use R nodes in KNIME to visualize more advanced

figures. Specifically, we make use of different plotting packages to realize heatmaps

and a PCA plot.

• The used RView (Table) nodes combine the possibility to write R snippet code with

visualization capabilities inside KNIME. Resulting images can be looked at in the

output RView, or saved via the Image Port Writer node.

47

• The heatmap nodes make use of the gplots libary, which is by default part of the

R Windows binaries for the KNIME 2.12 full installation. We again use regular ex-

pressions to extract all measured intensity columns for plotting. For clarity, feature

names are only shown in the heatmap after filtering by fold changes.

• The remaining node performs principal component analysis and plots the first two

principal components. Data points are colored by group membership to treated

or control samples. The R commands to install the necessary plotting package are

part of the node snippet. Removal of the comment character ‘#’ and execution of

the individual lines in the snippet node allows for package installation from inside

KNIME.

5.5.6 Data preparation for Reporting

Following the identification, quantification and statistical analysis our data ismerged and

formatted for reporting. First we want to discard our normalized and logarithmized in-

tensity values in favor of the original ones. To this end we first remove the intensity

columns (Column Filter) and add the original intensities back (Joiner). Note that we use

an Inner Join 1. Combining ID andQuantification table into a single table is again achieved

using a Joiner node.

What happens if we use an Left Outer Join, Right Outer Join or Full Outer

Join instead of the Inner Join?

Question

Inspect the output of the join operation after the Molecule Type Cast and

RDKit molecular structure generation.

Task

While all relevant information is now contained in our table the presentation could

be improved. Currently, we have several rows corresponding to a single consensus fea-

ture (=linked feature) but with different, alternative identifications. It would be more

1Inner Join is a technical term that describes how database tables are merged.

48

Figure 16: Data preparation for reporting

convenient to have only one row for each consensus feature with all accurate mass iden-

tifications added as additional columns. To achieve we use the Column to Grid node that

flattens several rows with the same consensus number into a single one. Note that we

have to specify themaximumnumber of columns in the grid sowe set this to a large value

(e.g. 100). We finally export the data to an Excel file (XLS Writer).

49

6 OpenSWATH

6.1 Introduction

OpenSWATH [12] is a module of OpenMS that allows analysis of LC-MS/MS DIA (data in-

dependent acquisition) data using the approach described by Gillet et al. [13]. The DIA

approach described there uses 32 cycles to iterate through precursor ion windows from

400-426Da to 1175-1201Da and at each step acquires a complete, multiplexed fragment

ion spectrum of all precursors present in that window. After 32 fragmentations (or 3.2

seconds), the cycle is restarted and the first window (400-426 Da) is fragmented again,

thus delivering complete “snapshots” of all fragments of a specific window every 3.2 sec-

onds.

Theanalysis approachdescribedbyGillet et al. extracts ion tracesof specific fragment

ions fromallMS2 spectra that have the sameprecursor isolationwindow, thus generating

data that is very similar to SRM traces.

6.2 Installation of OpenSWATH

OpenSWATHhas been fully integrated sinceOpenMS1.10 (http://open-ms.sourceforge.

net [3, 2, 14]).

6.3 Installation of mProphet

mProphet (http://www.mprophet.org/) [15] is available as standalone script in External_Tools

mProphet. R (http://www.r-project.org/) and thepackageMASS (http://cran.r-project.

org/web/packages/MASS/) are further required to execute mProphet. Please obtain a

version for either Windows, Mac or Linux directly from CRAN.

pyprophet, a much faster reimplementation of the mProphet algorithm is available

from PyPI (https://pypi.python.org/pypi/pyprophet/). The usage of pyprophet instead

of mProphet is suggested for large-scale applications, but the installation requires more

dependencies and therefore, for this tutorial the application of mProphet is described.

50

http://open-ms.sourceforge.net
http://open-ms.sourceforge.net
http://www.mprophet.org/
http://www.r-project.org/
http://cran.r-project.org/web/packages/MASS/
http://cran.r-project.org/web/packages/MASS/
https://pypi.python.org/pypi/pyprophet/

6.4 Generating the Assay Library

6.4.1 Generating TraML from transition lists

OpenSWATH requires the assay libraries to be supplied in the TraML format [16]. To en-

able manual editing of transition lists, the TOPP tool ConvertTSVToTraML is available

that uses tab separated files as input. Example datasets are provided in OpenSWATH

assay. Please note that the transition lists need to be named .csv or .tsv.

The header of the transition list contains the following variables (with example values

in brackets):

PrecursorMz

The mass-to-charge (m/z) of the precursor ion. (728.88)

ProductMz

The mass-to-charge (m/z) of the product or fragment ion. (924.539)

Tr_recalibrated

The normalized retention time (or iRT) [17] of the peptide. (26.5)

transition_name

A unique identifier for the transition.

(AQUA4SWATH_HMLangeA_ADSTGTLVITDPTR(UniMod:267)/2_y8)

CE

The collision energy that should be used for the acquisition. (27)

Optional (not used by OpenSWATH)

LibraryIntensity

The relative intensity of the transition. (3305.3)

transition_group_id

A unique identifier for the transition group.

(AQUA4SWATH_HMLangeA_ADSTGTLVITDPTR(UniMod:267)/2)

decoy

A binary value whether the transition is target or decoy (target:0, decoy:1). (0)

51

PeptideSequence

The unmodified peptide sequence. (ADSTGTLVITDPTR)

ProteinName

A unique identifier for the protein. (AQUA4SWATH_HMLangeA)

Annotation

The fragment ion annotation. (y8)

Optional (not used by OpenSWATH)

FullUniModPeptideName

Thepeptide sequencewithUniModmodifications. (ADSTGTLVITDPTR(UniMod:267))

MissedCleavages

The number of missed cleavages during enzymatic digestion. (0)

Optional (not used by OpenSWATH)

Replicates

The number of replicates. (0)

Optional (not used by OpenSWATH)

NrModifications

The number of modifications. (0)

Optional (not used by OpenSWATH)

PrecursorCharge

The precursor ion charge. (2)

GroupLabel

The stable isotope label. (light)

Optional (not used by OpenSWATH)

UniprotID

The Uniprot ID of the protein. ()

Optional (not used by OpenSWATH)

To convert transitions lists to TraML, use ConvertTSVToTraML:

52

Linux or Mac

On the Terminal:

ConvertTSVToTraML −in OpenSWATH_SGS_AssayLibrary.csv −out OpenSWATH_SGS_AssayLibrary.←↩
TraML

Windows

On the TOPP command line:

ConvertTSVToTraML.exe −in OpenSWATH_SGS_AssayLibrary.csv −out OpenSWATH_SGS_AssayLibrary←↩
.TraML

6.4.2 Appending decoys to a TraML

In addition to the target assays, OpenSWATH further requires decoy assays in the library

which are later used for classification and error rate estimation. For the decoy genera-

tion it is crucial that the decoys represent the targets in a realistic but unnatural manner

without interfering with the targets. The methods for decoy generation implemented in

OpenSWATH include ’shuffle’, ’pseudo-reverse’, ’reverse’ and ’shift’. To append decoys

to a TraML, the TOPP toolOpenSwathDecoyGenerator can be used:

Linux or Mac

On the Terminal:

OpenSwathDecoyGenerator −in OpenSWATH_SGS_AssayLibrary.TraML −out ←↩
OpenSWATH_SGS_AssayLibrary_with_Decoys.TraML −method shuffle −append −←↩
exclude_similar −remove_unannotated

Windows

On the TOPP command line:

OpenSwathDecoyGenerator.exe −in OpenSWATH_SGS_AssayLibrary.TraML −out ←↩
OpenSWATH_SGS_AssayLibrary_with_Decoys.TraML −method shuffle −append −←↩
exclude_similar −remove_unannotated

53

The flag -append generates an output TraML with the complete set of decoy and tar-

get assays. The flag -exclude_similar is used to exclude decoys which are very similar to

the target assays.

6.5 OpenSWATH KNIME

An example KNIMEworkflow forOpenSWATH is supplied in Workflows (Figure ??). The

example dataset can be used for this workflow (filenames in brackets):

1. Open Workflows OpenSWATH.zip in KNIME: File Import KNIME Workflow... .

2. Select the normalized retention time (iRT) assay library in TraML format by double-

clicking on node Input File iRT Assay Library .
(OpenSWATH assay OpenSWATH_iRT_AssayLibrary.TraML)

3. Select the SWATH MS data in mzML format as input by double-clicking on node
Input File SWATH-MS files .
(OpenSWATH data split_napedro_L120420_010_SW-*.nf.pp.mzML)

4. Select the target peptide assay library in TraML format as input by double-clicking

on node Input Files Assay Library .
(OpenSWATH assay OpenSWATH_SGS_AssayLibrary.TraML)

5. Set the output destination by double-clicking on node Output File .

6. Run the workflow.

The resulting output can be found at your selected path, which will be used as input

for mProphet. Execute the script on the Terminal (Linux or Mac) or cmd.exe (Windows)

in OpenSWATH result:

R −−slave −−args bin_dir=../../../External_Tools/mProphet/ mquest=OpenSWATH_output.csv workflow=←↩
LABEL_FREE num_xval=5 run_log=FALSE write_classifier=1 write_all_pg=1 < ../../../←↩
External_Tools/mProphet/mProphet.R

54

The main output will be called

OpenSWATH result mProphet_all_peakgroups.xls

with statistical information available in

OpenSWATH result mProphet.pdf.

Please note that due to the semi-supervisedmachine learning approach of mProphet

the results differ slightly when mProphet is executed several times.

Nodew1

Nodew2 Nodew3

Nodew4

Nodew5

SWATHVMSwfiles

AssaywLibrary

iRTwAssaywLibrary

Nodew9

OpenSwathChromatogramExtractor

OpenSwathRTNormalizer OpenSwathChromatogramExtractor

OpenSwathAnalyzer

OpenSwathFeatureXMLToTSV

InputwFiles

InputwFile

InputwFile

OutputwFile

Nodew1

Nodew2 Nodew3

Nodew4

Nodew5

SWATHVMSwfiles

AssaywLibrary

iRTwAssaywLibrary

Nodew9

OpenSwathChromatogramExtractor

OpenSwathRTNormalizer OpenSwathChromatogramExtractor

OpenSwathAnalyzer

OpenSwathFeatureXMLToTSV

InputwFiles

InputwFile

InputwFile

OutputwFile

Figure 17: OpenSWATH KNIMEWorkflow.

6.6 From the example dataset to real-life applications

The sample dataset used in this tutorial is part of the larger SWATH MS Gold Standard

(SGS) dataset which is described in the publication of Roest et al. [12]. It contains one

of 90 SWATH-MS runs with significant data reduction (peak picking of the raw, profile

data) to make file transfer and working with it easier. Usually SWATH-MS datasets are

huge with several gigabyte per run. Especially when complex samples in combination

with large assay libraries are analyzed, the TOPP tool based workflow requires a lot of

computational resources. For this reason, an integrated tool (OpenSwathWorkflow) has

been developed, combining all the steps shown in the KNIME-Workflow into a single ex-

ecutable. It is shipped with OpenMS 2.0.0. Instructions on how to use this tool can be

found on http://www.openswath.org.

55

http://www.openswath.org

7 An introduction to pyOpenMS

7.1 Introduction

pyOpenMSprovidesPythonbindings for a largepart of theOpenMS library formass spec-

trometry based proteomics. It thus provides access to a feature-rich, open-source algo-

rithm library for mass-spectrometry based proteomics analysis. These Python bindings

allow raw access to the data-structures and algorithms implemented in OpenMS, specifi-

cally those for file access (mzXML, mzML, TraML, mzIdentML among others), basic signal

processing (smoothing, filtering, de-isotoping and peak-picking) and complex data anal-

ysis (including label-free, SILAC, iTRAQ and SWATH analysis tools).

pyOpenMS is integrated into OpenMS starting from version 1.11. This tutorial is ad-

dressed to people already familiar with Python. If you are new to Python, we suggest

to start with a Python tutorial (http://en.wikibooks.org/wiki/Non-Programmer%27s_

Tutorial_for_Python_2.6).

7.2 Installation

7.2.1 Windows

1. Install Python 2.7 (http://www.python.org/download/)

2. Install NumPy (http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy)

3. Install setuptools (https://pypi.python.org/pypi/setuptools)

4. On the command line:

easy_install pyopenms

7.2.2 Mac OS X 10.10

1. On the Terminal:

56

http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_2.6
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_2.6
http://www.python.org/download/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy
https://pypi.python.org/pypi/setuptools

sudo easy_install pyopenms

7.2.3 Linux

1. Install Python 2.6 or 2.7 (Debian: python-dev, RedHat: python-devel)

2. Install NumPy (Debian / RedHat: python-numpy)

3. Install setuptools (Debian / RedHat: python-setuptools)

4. On the Terminal:

easy_install pyopenms

7.3 Build instructions

Instructions on how to build pyOpenMS can be found online (http://ftp.mi.fu-berlin.de/

OpenMS/documentation/html/pyOpenMS.html).

7.4 Your first pyOpenMS tool: pyOpenSwathFeatureXMLToTSV

The first tool that you are going to re-implement is a TOPP tool called OpenSwathFea-

tureXMLToTSV. Take a look at the help of the tool:

OpenSwathFeatureXMLToTSV −−help

OpenSwathFeatureXMLToTSV −− Converts a featureXML to a mProphet tsv.
Version: 2.0.0 Apr 11 2015, 02:02:58, Revision: 66a7739

Usage:
OpenSwathFeatureXMLToTSV <options>

Options (mandatory options marked with '∗'):
−in <files>∗ Input files separated by blank (valid formats: 'featureXML')
−tr <file>∗ TraML transition file (valid formats: 'traML')
−out <file>∗ Tsv output file (mProphet compatible) (valid formats: 'csv')
−short_format Whether to write short (one peptide per line) or long format (←↩

one transition per line).

57

http://ftp.mi.fu-berlin.de/OpenMS/documentation/html/pyOpenMS.html
http://ftp.mi.fu-berlin.de/OpenMS/documentation/html/pyOpenMS.html

−best_scoring_peptide <varname> If only the best scoring feature per peptide should be printed←↩
, give the variable name

Common TOPP options:
−ini <file> Use the given TOPP INI file
−threads <n> Sets the number of threads allowed to be used by the TOPP tool←↩

(default: '1')
−write_ini <file> Writes the default configuration file
−−help Shows options
−−helphelp Shows all options (including advanced)

OpenSwathFeatureXMLToTSV converts a featureXML file to a tab-separated value

text file. This example will teach you how to use pyOpenMS in combination with Python

to implement such a tool very quickly.

7.4.1 Basics

The first task that your tool needs to be able to do is to read the parameters from the

command line and provide a main routine. This is all standard Python and no pyOpenMS

is needed so far:

#!/usr/bin/env python
import sys

def main(options):

test parameter handling
print options.infile, options.traml_in, options.outfile

def handle_args():
import argparse

usage = ""
usage += "\nOpenSwathFeatureXMLToTSV −− Converts a featureXML to a mProphet tsv."

parser = argparse.ArgumentParser(description = usage)
parser.add_argument('−in', dest='infile', help = 'An input file containing �features ←↩

featureXML]')
parser.add_argument('−tr', dest='traml_in', help='An input file containing the transitions ←↩

TraML]')
parser.add_argument('−out', dest='outfile', help='Output mProphet TSV file [tsv]')

args = parser.parse_args(sys.argv[1:])
return args

58

if __name__ == '__main__':
options = handle_args()
main(options)

Execute this code in the example script

./pyOpenMS/OpenSwathFeatureXMLToTSV_basics.py

python OpenSwathFeatureXMLToTSV_basics.py −−help
usage: OpenSwathFeatureXMLToTSV_basics.py [−h] [−in INFILE] [−tr TRAML_IN]

[−out OUTFILE]

OpenSwathFeatureXMLToTSV −− Converts a featureXML to a mProphet tsv.

optional arguments:
−h, −−help show this help message and exit
−in INFILE An input file containing features [featureXML]
−tr TRAML_IN An input file containing the transitions [TraML]
−out OUTFILE Output mProphet TSV file [tsv]

python OpenSwathFeatureXMLToTSV_basics.py −in data/example.featureXML −tr assay/←↩
OpenSWATH_SGS_AssayLibrary.TraML −out example.tsv

data/example.featureXML assay/OpenSWATH_SGS_AssayLibrary.TraML example.tsv

The parameters are being read from the command line by the function handle_args()

and given to the main() function of the script, which prints the different variables.

7.4.2 Loading data structures with pyOpenMS

Now we’re going to import the pyOpenMS module with import pyopenms in the header

of the script and load the featureXML:

#!/usr/bin/env python
import pyopenms
import sys

def main(options):
load featureXML
features = pyopenms.FeatureMap()
fh = pyopenms.FileHandler()

59

fh.loadFeatures(options.infile, features)
keys = []
features[0].getKeys(keys)
print keys

def handle_args():
import argparse

usage = ""
usage += "\nOpenSwathFeatureXMLToTSV −− Converts a featureXML to a mProphet tsv."

parser = argparse.ArgumentParser(description = usage)
parser.add_argument('−in', dest='infile', help = 'An input file containing features [←↩

featureXML]')
parser.add_argument('−tr', dest='traml_in', help='An input file containing the transitions [←↩

TraML]')
parser.add_argument('−out', dest='outfile', help='Output mProphet TSV file [tsv]')

args = parser.parse_args(sys.argv[1:])
return args

if __name__ == '__main__':
options = handle_args()
main(options)

The function pyopenms.FeatureMap() initializes an OpenMS FeatureMap data struc-

ture. The function pyopenms.FileHandler() prepares a filehandlerwith the variable name

fh and fh.loadFeatures(options.infile, features) takes the filename and imports the fea-

tureXML into the FeatureMap data structure.

In the next step, we’re accessing the keys using the function getKeys() and printing

them to stdout:

python OpenSwathFeatureXMLToTSV_datastructures1.py −in data/example.featureXML −tr assay/←↩
OpenSWATH_SGS_AssayLibrary.TraML −out example.tsv

['PeptideRef', 'leftWidth', 'rightWidth', 'total_xic', 'peak_apices_sum', 'var_xcorr_coelution', ←↩
'var_xcorr_coelution_weighted ', 'var_xcorr_shape', 'var_xcorr_shape_weighted', '←↩
var_library_corr', 'var_library_rmsd', 'var_library_manhattan', 'var_library_dotprod', '←↩
delta_rt', 'assay_rt', 'norm_RT', 'rt_score', 'var_norm_rt_score', 'var_intensity_score', '←↩
nr_peaks', 'sn_ratio', 'var_log_sn_score', 'var_elution_model_fit_score', '←↩
xx_lda_prelim_score', 'var_isotope_correlation_score', 'var_isotope_overlap_score', '←↩
var_massdev_score', 'var_massdev_score_weighted', 'var_bseries_score', 'var_yseries_score', ←↩
'var_dotprod_score', 'var_manhatt_score', 'main_var_xx_swath_prelim_score', 'PrecursorMZ', '←↩
xx_swath_prelim_score']

In the next task, please load the TraML into an OpenMS TargetedExperiment data

60

structure, analogously to the featureXML. You might want to consult the pyOpenMS

manual (http://proteomics.ethz.ch/pyOpenMS_Manual.pdf), whichprovides anoverview

of all functionality. If you have trouble reading the TraML, search for TraMLFile(). If you

can’t solve the task, take a look at OpenSwathFeatureXMLToTSV_datastructures2.py

7.4.3 Converting data in the featureXML to a TSV

Nowthat all data structures arepopulated,weneed toaccess thedata using theprovided

API and store it in something that is directly accessible from Python. We prepared two

functions for you: get_header() & convert_to_row():

def get_header(features):
keys = []
features[0].getKeys(keys)
header = [

"transition_group_id",
"run_id",
"filename",
"RT",
"id",
"Sequence" ,
"FullPeptideName",
"Charge",
"m/z",
"Intensity",
"ProteinName",
"decoy"]

header.extend(keys)
return header

get_header() takes as input a FeatureMap and uses the getKeys() function that you

have seen before to extend a predefined header list based on the contents of the Fea-

tureMap. The return variable is a native Python list.

def convert_to_row(first, targ, run_id, keys, filename):
peptide_ref = first.getMetaValue("PeptideRef")
pep = targ.getPeptideByRef(peptide_ref)
full_peptide_name = "NA"
if (pep.metaValueExists("full_peptide_name")):

full_peptide_name = pep.getMetaValue("full_peptide_name")

decoy = "0"

61

http://proteomics.ethz.ch/pyOpenMS_Manual.pdf

peptidetransitions = [t for t in targ.getTransitions() if t.getPeptideRef() == peptide_ref]
if len(peptidetransitions) > 0:

if peptidetransitions[0].getDecoyTransitionType() == pyopenms.DecoyTransitionType().DECOY←↩
:
decoy = "1"

elif peptidetransitions[0].getDecoyTransitionType() == pyopenms.DecoyTransitionType().←↩
TARGET:
decoy = "0"

protein_name = "NA"
if len(pep.protein_refs) > 0:

protein_name = pep.protein_refs[0]

row = [
first.getMetaValue("PeptideRef"),
run_id,
filename,
first.getRT(),
first.getUniqueId(),
pep.sequence,
full_peptide_name,
pep.getChargeState(),
first.getMetaValue("PrecursorMZ"),
first.getIntensity(),
protein_name,
decoy

]

for k in keys:
row.append(first.getMetaValue(k))

return row

convert_to_row() is a bit more complicated and takes as first input a Feature OpenMS

class. From this, we access stored values using the provided functions (getRT(), getU-

niqueId(), etc). It further takes a TargetedExperiment to access information from the

TraML with the provided routines. This data is then stored in a standard Python list with

the variable name row and returned.

7.4.4 Putting things together

Now put these two functions into the header of

OpenSwathFeatureXMLToTSV_datastructures2.py.

62

Your final goal is to implement the conversion functionality into the main function

using get_header() & convert_to_row() and to write a TSV using the standard csv mod-

ule from Python http://docs.python.org/2/library/csv.html. Compare the results with

./result/example.tsv. Are the results identical? Congratulations to your first pyOpenMS

tool!

Hint: If you struggle at anypoint, takea lookatOpenSwathFeatureXMLToTSV_solution.py.

7.4.5 Bonus task

Implement all other 184 TOPP tools using pyOpenMS.
Task

63

http://docs.python.org/2/library/csv.html

8 Quality control

8.1 Introduction

In this chapter, we will build on an existing workflow with OpenMS / KNIME to add some

quality control (QC). We will utilize the qcML tools in OpenMS to create a file with which

we can collect different measures of quality to the mass spectrometry runs themselves

and the applied analysis. The file also serves the means of visually reporting on the col-

lected quality measures and later storage along the other analysis result files. We will,

step-by-step, extend the label-free quantitation workflow from section 3 with QC func-

tions and thereby enrich each time the report given by the qcML file. But first, to make

sure you get themost of this tutorial section, a little primer on howwe handle QC on the

technical level.

QC metrics and qcML

To assert the quality of a measurement or analysis we use quality metrics. Metrics are

describing a certain aspect of the measurement or analysis and can be anything from a

single value, over a range of values to a image plot or other summary. Thus, qcMLmetric

representation is divided into QC parameters (QP) and QC attachments (QA) to be able

to represent all sorts of metrics on a technical level.

A QPmay (or may not) have a value which would equal a metric describable with a single

value. If themetric is more complex and needsmore than just a single value, theQP does

not require the single value but rather depends on an attachment of values (QA) for full

meaning. Such a QA holds the plot or the range of values in a table-like form. Like this,

we can describe any metric by a QP and an optional QA.

To assure a consensual meaning of the quality parameters and attachments, we created

a controlled vocabulary (CV). Each entry in the CV describes a metric or part/extension

thereof. We embed each parameter or attachment with one of these and by doing so,

connect a meaning to the QP/QA. Like this, we later know exactly what we collected and

the programs can find and connect the right dots for rendering the report or calculating

new metrics automatically. You can find the constantly growing controlled vocabulary

here:

64

https://github.com/qcML/qcML-development/blob/master/cv/qc-cv.obo .
Finally, in a qcml file, we split themetrics on a permass-spectrometry-run base or a set of

mass-spectrometry-runs respectively. Each run or set will contain its QP/QAwe calculate

for it, describing their quality.

8.2 Building a qcML file per run

Note: For this part of the tutorial, you need the latest version of OpenMS in

KNIME (bleeding edge development version). Therefore you have to add the

software site http://tech.knime.org/update/community-contributions/trunk/ inKNIME’s Help
Install New Software menu and update OpenMS.

As a start, we will build a basic qcML file for each mzML file in the label-free anal-

ysis. We are already creating the two necessary analysis files to build a basic qcML file

upon eachmzMLfile, a feature file and an identification file. We use theQCCreator node

from Community Nodes OpenMS Utilities where also all otherQC* nodes will be found. The
QCCreatorwill create a very basic qcML file in which it will store collected and calculated

quality data.

• Copy your label-fee quantitation workflow into a new lfq-qc workflow and open it.

• Place the QCCreator node after the IDMapper node. Being inside the ZipLoop, it

will execute for each of the three mzML files the Input node.

• Connect the first QCCreator port to the first ZipLoopStart outlet port, which will

carry the individual mzML files.

• Connect the last’s IDoutlet port (IDFilteror the IDmetanode) to the secondQCCreator

port for the identification file.

• Finally, connect the IDMapper outlet to the third QCCreator port for the feature

file.

The created qcML files will not have much to show for, basic as they are. So we will

extend them with some basic plots.

65

• First, we will add an 2D overview image of the given mass spectrometry run as you

may know it from TOPPView. Add a the ImageCreator node from Community Nodes
OpenMS Utilities . Change the width and heigth parameters to 640x640 as we don’t

want it to be too big. Connect it the first ZipLoopStart outlet port, so it will create

an image file of the mzML’s contained run.

• Now we have to embed this file into the qcML file, attach it to the right Quali-

tyParameter. For this, place a QCEmbedder node behind the ImageCreator and

connect that to its third inlet port. Its first inlet port connect to the outlet of the

QCCalculatornode to pass on the qcMLfile. Nowchange the parameter qp_att_acc

to QC:0000055 which designates the attached image to be of type QC:0000055

- MS experiment heatmap. Finally, change the parameter cv_acc to QC:0000004,

to attach the image to the QualityParameter QC:0000004 - MS acquisition result

details.

• For a reference of which CVs are already defined for qcML, have a look at
https://github.com/qcML/qcML-development/blob/master/cv/qc-cv.obo .

There are two other basic plots which we almost always might want to look at be-

fore judging the quality of a mass spectrometry run and its identifications: the total ion

current (TIC) and the PSM mass error (Mass accuracy), which we have available as pre-

packaged QC metanodes.

Import theworkflowfrom Workflows Quality Control QC Metanodes.zip

in KNIME: File Import KNIME Workflow...

Task

• Copy theMass accuracymetanode into theworkflowbehind theQCEmbeddernode

and connect it. The qcMLwill be passed on and theMass accuracy plots added. The

information needed was already collected by theQCCalculator.

• Do the same with the TIC metanode so that your qcML file will get passed on and

enriched on each step.

R Dependencies: This section requires that the R packages ggplot2 and scales are

both installed. This is the same procedure as in section 5.5.5. In case that you use an R

66

installation where one or both of them are not yet installed, open the R Snippet nodes

inside the metanodes you just used (double-click). Edit the script in the R Script text edi-

tor from:

#install.packages("ggplot2")
#install.packages("scales")

to

install.packages("ggplot2")
install.packages("scales")

Press Eval script to execute the script.

Figure 18: Basic QC setup within a LFQ workflow

Note: Tohave apeek intowhat our qcMLnow looks like for oneof theZipLoop it-

erations,wecanaddanOutput Foldernode from Community Nodes GenericKnimeNodes
IO and set its destination parameter to somewhere we want to find our in-

termediate qcML files in, for example tmp qc_lfq . If we now connect the last

67

metanode with the Output Folder and restart the workflow, we can start in-

specting the qcML files.

Find your first created qcML file and open it with the browser (not IE), and

the contained QC parameters will be rendered for you.

Task

8.3 Adding brand new QC metrics

We can also add brand new QC metrics to our qcML files. Remember the Histogram you

added inside the ZipLoop during the label-free quantitation section? Let’s imagine for a

moment this was a brand new and utterly important metric and plot for the assessment

of your analyses quality. There is an easy way to pick up such new finds along the work-

flow into your qcMLs. Though the Histogram node cannot pass its plot to an image, we

will do with a R View (table).

• Add an R View (table) next to the IDTextReader node and connect them.

• Edit the R View (table) by adding the R Script according to this:

#install.packages("ggplot2")
library("ggplot2")
ggplot(knime.in, aes(x=peptide_charge)) +
geom_histogram(binwidth=1, origin =−0.5) +
scale_x_discrete() +
ggtitle("Identified peptides charge histogram") +
ylab("Count")

• This will create a plot like the Histogram node on peptide_charge and pass it on as

an image.

• Nowaddandconnect a Image2FilePortnode from Community Nodes GenericKnimeNodes
Flow to the R View (table).

68

• We can now use a QCEmbedder node like before to add our new metric plot into

the qcML.

• After looking for an appropriate target in
https://github.com/qcML/qcML-development/blob/master/cv/qc-cv.obo , we found that we can

attachourplot to theMS identification result details by setting theparameterqp_att_acc

to QC:0000025, as we are plotting the charge histogram of our identified peptides.

• To have the plot later displayed properly, we assign it the parameter cv_acc of

QC:0000051, a generic plot. Also we made sure in the R Script, that our plot car-

ries a caption so that we know which is which, if we had more than one new plot.

• Now we redirect the QCEmbedders output to the Output Folder from before and

can have a look at how our qcML is coming along after restarting the workflow.

Figure 19: QC with new metric

69

8.4 Set QC metrics

Besides monitoring the quality of each individual mass spectrometry run analysis, an-

other capability of QC with OpenMS and qcML is to monitor the complete set. The easi-

est control is to compare mass spectrometry runs which should be similar, e.g. technical

replicates, to spot any aberrations in the set.

For this, we will first collect all created qcML files, merge them together and use the

qcML onboard set QC properties to detect any outliers.

• connect the QCEmbedders output from last section to the ZipLoopEnds second

input port.

• The corresponding output port will collect all qcML files from each ZipLoop itera-

tion and pass them on as a list of files.

• Now we add a QCMerger node after the ZipLoopEnd and feed it that list of qcML

files. In addition, we set its parameter setname to give our newly created set a

name - say spikein_replicates.

• To inspect all the QCs next to each other in that created qcML file, we have to add

a newOutput Folder to which we can connect theQCMerger output.

When inspecting the set-qcMLfile in abrowser,wewill bepresentedanotheroverview.

After the set content listing, the basic QC parameters (like number of identifications) are

each displayed in a graph. Each set member (or run) has its own section on the x-axis

and each run is connected with that graph via a link in the mouseover on one of the QC

parameter values.

70

Figure 20: QC set creation from ZipLoop

For ideas on newQCmetrics andparameters -as you add them in your qcML

files as generic parameters, feel free to contact us, so we can include them

in the CV.

Task

71

References

[1] OpenMS, OpenMS home page [online]. 6

[2] M. Sturm, A. Bertsch, C. Gröpl, A. Hildebrandt, R. Hussong, E. Lange, N. Pfeifer,

O. Schulz-Trieglaff, A. Zerck, K. Reinert, and O. Kohlbacher, OpenMS - an open-

source software framework for mass spectrometry., BMC bioinformatics 9(1)

(2008), doi:10.1186/1471-2105-9-163. 6, 50

[3] O. Kohlbacher, K. Reinert, C. Gröpl, E. Lange, N. Pfeifer, O. Schulz-Trieglaff, and

M. Sturm, TOPP–theOpenMSproteomicspipeline., Bioinformatics 23(2) (Jan. 2007).

6, 50

[4] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C. Sieb,

K. Thiel, and B. Wiswedel, KNIME: The Konstanz Information Miner, in Studies in

Classification, Data Analysis, and Knowledge Organization (GfKL 2007), Springer,

2007. 6

[5] M. Sturm and O. Kohlbacher, TOPPView: An Open-Source Viewer for Mass Spec-

trometry Data, Journal of proteome research 8(7), 3760–3763 (July 2009), doi:

10.1021/pr900171m. 6

[6] L. Y. Geer, S. P.Markey, J. A. Kowalak, L.Wagner,M. Xu, D.M.Maynard, X. Yang,W. Shi,

and S. H. Bryant, Open mass spectrometry search algorithm, Journal of Proteome

Research 3(5), 958–964 (2004). 22

[7] A. Chawade, M. Sandin, J. Teleman, J. Malmström, and F. Levander, Data Process-

ing Has Major Impact on the Outcome of Quantitative Label-Free LC-MS Analysis,

Journal of Proteome Research 14(2), 676–687 (2015), PMID: 25407311, arXiv:http:

//dx.doi.org/10.1021/pr500665j, doi:10.1021/pr500665j. 22

[8] D. S. Wishart, D. Tzur, C. Knox, et al., HMDB: the Human Metabolome Database,

Nucleic Acids Res 35(Database issue), D521–6 (Jan 2007), doi:10.1093/nar/gkl923.

41

72

http://www.OpenMS.de
http://dx.doi.org/10.1186/1471-2105-9-163
http://dx.doi.org/10.1186/1471-2105-9-163
http://dx.doi.org/10.1186/1471-2105-9-163
http://view.ncbi.nlm.nih.gov/pubmed/17237091
http://dx.doi.org/10.1021/pr900171m
http://dx.doi.org/10.1021/pr900171m
http://dx.doi.org/10.1021/pr900171m
http://dx.doi.org/10.1021/pr900171m
http://pubs.acs.org/doi/abs/10.1021/pr0499491
http://dx.doi.org/10.1021/pr500665j
http://dx.doi.org/10.1021/pr500665j
http://arxiv.org/abs/http://dx.doi.org/10.1021/pr500665j
http://arxiv.org/abs/http://dx.doi.org/10.1021/pr500665j
http://dx.doi.org/10.1021/pr500665j
http://dx.doi.org/10.1093/nar/gkl923

[9] D. S. Wishart, C. Knox, A. C. Guo, et al., HMDB: a knowledgebase for the human

metabolome, Nucleic Acids Res 37(Database issue), D603–10 (Jan 2009), doi:10.

1093/nar/gkn810. 41

[10] D. S. Wishart, T. Jewison, A. C. Guo, M. Wilson, C. Knox, et al., HMDB 3.0–The Human

Metabolome Database in 2013, Nucleic Acids Res 41(Database issue), D801–7 (Jan

2013), doi:10.1093/nar/gks1065. 41

[11] J. Griss, A. R. Jones, T. Sachsenberg, M. Walzer, L. Gatto, J. Hartler, G. G. Thallinger,

R. M. Salek, C. Steinbeck, N. Neuhauser, J. Cox, S. Neumann, J. Fan, F. Reisinger, Q.-

W. Xu, N. Del Toro, Y. Perez-Riverol, F. Ghali, N. Bandeira, I. Xenarios, O. Kohlbacher,

J. A. Vizcaino, andH. Hermjakob, ThemzTabData Exchange Format: communicating

MS-based proteomics and metabolomics experimental results to a wider audience,

Mol Cell Proteomics (Jun 2014), doi:10.1074/mcp.O113.036681. 42

[12] H. L. Röst, G. Rosenberger, P. Navarro, L. Gillet, S. M. Miladinovic, O. T. Schubert,

W.Wolski, B. C. Collins, J.Malmstrom, L.Malmström, andR. Aebersold, OpenSWATH

enables automated, targeted analysis of data-independent acquisitionMS data, Na-

ture Biotechnology 32(3), 219–223 (Mar. 2014). 50, 55

[13] L. C. Gillet, P. Navarro, S. Tate, H. Röst, N. Selevsek, L. Reiter, R. Bonner, and

R. Aebersold, Targeted Data Extraction of the MS/MS Spectra Generated by Data-

independent Acquisition: A New Concept for Consistent and Accurate Proteome

Analysis., Molecular & Cellular Proteomics 11(6) (June 2012), doi:10.1074/mcp.

O111.016717. 50

[14] A. Bertsch, C. Gröpl, K. Reinert, and O. Kohlbacher, OpenMS and TOPP: open source

software for LC-MS data analysis., Methods in molecular biology (Clifton, N.J.) 696,

353–367 (2011), doi:10.1007/978-1-60761-987-1_23. 50

[15] L. Reiter, O. Rinner, P. Picotti, R. Huttenhain, M. Beck, M.-Y. Brusniak, M. O. Hen-

gartner, and R. Aebersold, mProphet: automated data processing and statistical

validation for large-scale SRM experiments, Nature Methods 8(5), 430–435 (May

2011), doi:10.1038/nmeth.1584. 50

[16] E. W. Deutsch, M. Chambers, S. Neumann, F. Levander, P.-A. Binz, J. Shofstahl, D. S.

Campbell, L.Mendoza, D.Ovelleiro, K.Helsens, L.Martens, R.Aebersold, R. L.Moritz,

73

http://dx.doi.org/10.1093/nar/gkn810
http://dx.doi.org/10.1093/nar/gkn810
http://dx.doi.org/10.1093/nar/gks1065
http://dx.doi.org/10.1074/mcp.O113.036681
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1007/978-1-60761-987-1_23
http://dx.doi.org/10.1007/978-1-60761-987-1_23
http://dx.doi.org/10.1007/978-1-60761-987-1_23
http://dx.doi.org/10.1038/nmeth.1584
http://dx.doi.org/10.1038/nmeth.1584
http://dx.doi.org/10.1038/nmeth.1584

and M.-Y. Brusniak, TraML—A Standard Format for Exchange of Selected Reaction

Monitoring Transition Lists, Molecular & Cellular Proteomics 11(4) (Apr. 2012), doi:

10.1074/mcp.R111.015040. 51

[17] C. Escher, L. Reiter, B. MacLean, R. Ossola, F. Herzog, J. Chilton, M. J. MacCoss, and

O. Rinner, Using iRT, a normalized retention time formore targetedmeasurementof

peptides., Proteomics 12(8), 1111–1121 (Apr. 2012), doi:10.1002/pmic.201100463.

51

74

http://dx.doi.org/10.1074/mcp.R111.015040
http://dx.doi.org/10.1074/mcp.R111.015040
http://dx.doi.org/10.1074/mcp.R111.015040
http://dx.doi.org/10.1074/mcp.R111.015040
http://dx.doi.org/10.1002/pmic.201100463
http://dx.doi.org/10.1002/pmic.201100463
http://dx.doi.org/10.1002/pmic.201100463

	General remarks
	Getting started
	Data conversion
	Data visualization using TOPPView
	Introduction to KNIME / OpenMS
	Install OpenMS using KNIME
	KNIME concepts
	Overview of the graphical user interface
	Creating workflows
	Sharing workflows
	Duplicating workflows
	A minimal workflow
	Advanced topic: Meta nodes
	Advanced topic: R integration

	Label-free quantification
	Introduction
	Peptide Identification
	Bonus task: identification using several search engines

	Quantification
	Combining quantitative information across several label-free experiments
	Basic data analysis in KNIME

	Protein Inference
	Extending the LFQ workflow by protein inference and quantification
	Statistical validation of protein inference results
	Data preparation
	ROC curve of protein ID
	Posterior probability and FDR of protein IDs

	Metabolomics
	Introduction
	Quantifying metabolites across several experiments
	Identifying metabolites in LC-MS/MS samples
	Convert your data into a KNIME table
	Bonus task: Visualizing data

	Downstream data analysis and reporting
	Data preparation ID
	Data preparation Quant
	Statistical analysis
	Interactive visualization
	Advanced visualization
	Data preparation for Reporting

	OpenSWATH
	Introduction
	Installation of OpenSWATH
	Installation of mProphet
	Generating the Assay Library
	Generating TraML from transition lists
	Appending decoys to a TraML

	OpenSWATH KNIME
	From the example dataset to real-life applications

	An introduction to pyOpenMS
	Introduction
	Installation
	Windows
	Mac OS X 10.10
	Linux

	Build instructions
	Your first pyOpenMS tool: pyOpenSwathFeatureXMLToTSV
	Basics
	Loading data structures with pyOpenMS
	Converting data in the featureXML to a TSV
	Putting things together
	Bonus task

	Quality control
	Introduction
	Building a qcML file per run
	Adding brand new QC metrics
	Set QC metrics

