
User Tutorial



The OpenMS Developers

Creative Commons Attribution 4.0 International (CC BY 4.0)



Contents

1 General remarks 6

2 Getting started 7

2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Installation from the OpenMS USB stick . . . . . . . . . . . . . . 7

2.1.2 Installation from the internet . . . . . . . . . . . . . . . . . . . . 8

2.2 Data conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 MSConvertGUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 msconvert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Data visualization using TOPPView . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Introduction to KNIME / OpenMS . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Plugin and dependency installation . . . . . . . . . . . . . . . . . 12

2.4.2 KNIME concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Overview of the graphical user interface . . . . . . . . . . . . . . 16

2.4.4 Creating workflows . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.5 Sharing workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.6 Duplicating workflows . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.7 A minimal workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.8 Advanced topic: Meta nodes . . . . . . . . . . . . . . . . . . . . . 21

2.4.9 Advanced topic: R integration . . . . . . . . . . . . . . . . . . . . 22

3 Label-free quantification of peptides 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Peptide Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Bonus task: identification using several search engines . . . . . 27

3.3 Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Combining quantitative information across several label-free experi-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Basic data analysis in KNIME . . . . . . . . . . . . . . . . . . . . . 32

4 Protein Inference 34

4.1 Extending the LFQ workflow by protein inference and quantification . 34

4.2 Statistical validation of protein inference results . . . . . . . . . . . . . 36

4.2.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 ROC curve of protein ID . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.3 Posterior probability and FDR of protein IDs . . . . . . . . . . . . 37

3



5 Label-free quantification of metabolites 39

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Quantifying metabolites across several experiments . . . . . . . . . . . 39

5.3 Identifying metabolites in LC-MS/MS samples . . . . . . . . . . . . . . . 41

5.4 Convert your data into a KNIME table . . . . . . . . . . . . . . . . . . . . 43

5.4.1 Bonus task: Visualizing data . . . . . . . . . . . . . . . . . . . . . 43

5.5 Downstream data analysis and reporting . . . . . . . . . . . . . . . . . . 44

5.5.1 Signal processing and data preparation for identification . . . . 44

5.5.2 Data preparation for quantification . . . . . . . . . . . . . . . . . 44

5.5.3 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5.4 Interactive visualization . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5.5 Advanced visualization . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5.6 Data preparation for Reporting . . . . . . . . . . . . . . . . . . . 47

5.6 Spectral library search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6.1 Manual validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 OpenSWATH 52

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Installation of OpenSWATH . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Installation of mProphet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4 Generating the Assay Library . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4.1 Generating TraML from transition lists . . . . . . . . . . . . . . . 52

6.4.2 Appending decoys to a TraML . . . . . . . . . . . . . . . . . . . . 54

6.5 OpenSWATH KNIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.6 From the example dataset to real-life applications . . . . . . . . . . . . 56

7 An introduction to pyOpenMS 58

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2.1 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2.2 Mac OS X 10.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2.3 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 Build instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Your first pyOpenMS tool: pyOpenSwathFeatureXMLToTSV . . . . . . . 59

7.4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.4.2 Loading data structures with pyOpenMS . . . . . . . . . . . . . . 61

7.4.3 Converting data in the featureXML to a TSV . . . . . . . . . . . . 63

7.4.4 Putting things together . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.5 Bonus task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4



8 Quality control 65

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.2 Building a qcML file per run . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.3 Adding brand new QC metrics . . . . . . . . . . . . . . . . . . . . . . . . 68

8.4 Set QC metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9 Troubleshooting guide 72

9.1 FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9.1.1 How to debug KNIME and/or the OpenMS nodes? . . . . . . . . 72

9.1.2 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.1.3 Platform-specific problems . . . . . . . . . . . . . . . . . . . . . . 74

9.1.4 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

9.2 Sources of support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5



1 General remarks

• This handout will guide you through an introductory tutorial for the OpenMS/-

TOPP software package [1].

• OpenMS [2, 3] is a versatile open-source library for mass spectrometry data

analysis. Basedon this library, weoffer a collectionof command-line tools ready

to be used by end users. These so-called TOPP tools (short for ”The OpenMS

Proteomics Pipeline”) [4] can be understood as small building blocks of arbi-

trarily complex data analysis workflows.

• Inorder to facilitateworkflowconstruction,OpenMSwas integrated intoKNIME [5],

theKonstanz InformationMiner, an open-source integration platformproviding

a powerful and flexible workflow system combined with advanced data analyt-

ics, visualization, and report capabilities. Raw MS data as well as the results of

data processing using TOPP can be visualized using TOPPView [6].

• This tutorial was designed for use in a hands-on tutorial session but can also be

worked through at home using the online resources. You will become familiar

with some of the basic functionalities of OpenMS/TOPP, TOPPView, and KNIME

and learn how to use a selection of TOPP tools used in the tutorial workflows.

• All sample data referenced in this tutorial can be found in the Example_Data

folder on the USB stick that came with this tutorial (or released online on our

GitHub page OpenMS/Tutorials).

6



2 Getting started

2.1 Installation

Beforewe get startedwewill install OpenMS and KNIME. If you take part in a training

session you will have likely received an USB stick from us that contains the required

data and software. If we provide laptops with the software you may of course skip

the installation process and continue reading the next section.

2.1.1 Installation from the OpenMS USB stick

Please choose the directory that matches your operating system and execute the in-

staller.

For example forWindows you call

• the OpenMS installer: Windows / OpenMS-2.3.0_Win64.exe

• the KNIME installer: Windows / KNIME 3.4.1 Installer (64bit).exe

• OpenMS prerequisites (Windows-only): After installation, before your first use

of the OpenMS plugin in KNIME you will be asked to download it automatically

if certain requirements are not found in your Windows registry. Alternatively,

you can get a bundled version here or on the OpenMS USB stick ( Windows /

OpenMS-2.3-prerequisites-installer.exe).

onmacOS you call

• the OpenMS installer: Mac / OpenMS-2.3.0-Darwin.dmg

• the KNIME installer: Mac / knime_3.4.1.app.macosx.cocoa.x86_64.dmg

and follow the instructions. For the OpenMS installation onmacOS, you need to

accept the license drag and drop theOpenMS folder into your Applications folder.

Note: Due to increasing security measures for downloaded apps (e.g. path

randomization) onmacOS youmight need to open TOPPView.app and TOP-

PAS.app while holding ctrl and accept the warning. If the app still does not
open, you might need to move them from Applications OpenMS-2.3.0 to

e.g. your Desktop and back.

On Linux you can extract KNIME to a folder of your choice and for TOPPView you

need to install OpenMS via your package manager or build it on your own with the

instructions under www.openms.de/documentation.

7

https://sourceforge.net/projects/open-ms/files/OpenMS/OpenMS-2.3/OpenMS-2.3-prerequisites-installer.exe/download
https://www.openms.de/documentation


Note: If you have installed OpenMS on Linux or macOS via your package

manager (for instance by installing the OpenMS-2.3.0-Linux.deb package),

then you need to set the OPENMS_DATA_PATH variable to the directory contain-

ing the shared data (normally /usr/share/OpenMS). This must be done prior

to running any TOPP tool.

2.1.2 Installation from the internet

If you are working through this tutorial at home you can get the installers under the

following links:

• OpenMS: https://www.openms.de/download/openms-binaries

• KNIME: https://www.knime.org/downloads/overview

• OpenMS prerequisites (Windows-only): After installation, before your first use

of the OpenMS plugin in KNIME you will be asked to download it automatically

if certain requirements are not found in your Windows registry. Alternatively,

you can get a bundled version here.

Choose the installers for the platform you are working on. We suggest using the full

installers of KNIME. It includes all free community extensions so that you can skip

the installation of the OpenMS plugin andmost other dependencies for the example

workflows later.

2.2 Data conversion

Each MS instrument vendor has one or more formats for storing the acquired data.

Converting these data into an open format (preferably mzML) is the very first step

when youwant toworkwith open-sourcemass spectrometry software. A freely avail-

able conversion tool is MSconvert, which is part of a ProteoWizard installation. All

files used in this tutorial have already been converted to mzML by us, so you do not

need to perform the data conversion yourself. However, we provide a small raw file

so you can try the important step of raw data conversion for yourself.

Note: The OpenMS installation package for Windows automatically installs

ProteoWizard, so you do not need to download and install it separately. Due

to restrictions from the instrument vendors, file format conversion formost

formats is only possible on Windows systems. In practice, performing the

conversion to mzML on the acquisition PC connected to the instrument is

usually the most convenient option.

8

https://www.openms.de/download/openms-binaries
https://www.knime.org/downloads/overview
https://sourceforge.net/projects/open-ms/files/OpenMS/OpenMS-2.3/OpenMS-2.3-prerequisites-installer.exe/download


Figure 1: MSConvertGUI (ProteoWizard), allows converting raw files tomzML. Select the raw files you
want to convert by clicking on the browse button and then on ”Add”. Default parameters can usually
be kept as-is. To reduce the initial data size, make sure that the peakPicking filter (converts profile
data to centroided data) is listed, enabled (true) and applied to all MS levels (parameter ”1-”). Start
the conversion process by clicking on the ”Start” button.

To convert raw data to mzML using ProteoWizard you can either use MSConvert-

GUI (a graphical user interface) ormsconvert (a simple command line tool). Both tools

are available in:

C: / Program Files / OpenMS-2.3.0 / share / OpenMS / THIRDPARTY / pwiz-bin.

You canfinda small RAWfileon theUSBstick: Example_Data Introduction datasets

raw.

2.2.1 MSConvertGUI

MSConvertGUI (see Fig. 1) exposes themain parameters for data conversion in a con-

venient graphical user interface.

2.2.2 msconvert

Themsconvert command line tool offersmoreoptions than thegraphical toolMSCon-

vertGUI. It allows converting large numbers of files and can be easier automatized.

To convert and pick the file raw_data_file.RAW you may write:
msconvert raw_data_file.RAW --filter ”peakPicking true 1-”

9



Figure 2: TOPPView, the graphical application for viewing mass spectra and analysis results. Top
window shows a small region of a peakmap. In this 2D representation of themeasured spectra, signals
of eluting peptides are colored according to the raw peak intensities. The lower window displays an
extracted spectrum (=scan) from the peak map. On the right side, the list of spectra can be browsed.

in your command line.

To convert all RAW files in a folder may write:
msconvert *.RAW -o my_output_dir

Note: To display all options youmay type msconvert --help . Additional informa-

tion is available on the ProteoWizard web page.

2.3 Data visualization using TOPPView

Visualizing the data is the first step in quality control, an essential tool in understand-

ing the data, and of course an essential step in pipeline development. OpenMS pro-

vides a convenient viewer for some of the data: TOPPView.

We will guide you through some of the basic features of TOPPView. Please famil-

iarize yourself with the key controls and visualization methods. We will make use of

these later throughout the tutorial. Let’s start with a first look at one of the files of

our tutorial data set:

• Start TOPPView (seeWindows’ Start-Menu or Applications OpenMS-2.3.0 on

macOS)

10



• Go to File Open File , navigate to the directory where you copied the contents

of the USB stick to, and select Example_Data Introduction datasets small

velos005614.mzML . This file contains a reduced LC-MS map (only a selected RT

and m/z range was extracted using the TOPP tool FileFilter) of a label-free

measurement of the human platelet proteome recorded on an Orbitrap velos.

The other two mzML files contain technical replicates of this experiment. First,

we want to obtain a global view on the whole LC-MS map - the default option

Map view 2D is the correct one and we can click the Ok button.

• Play around.

• Threebasicmodesallowyou to interactwith thedisplayeddata: scrolling, zoom-

ing and measuring:

– Scroll mode

* Is activated by default (though each loaded spectra file is displayed

zoomed out first, so you do not need to scroll).

* Allows you to browse your data bymoving around in RT andm/z range.

* When zoomed in, you can scroll through the spectra. Click-drag on the

current view.

* Arrow keys can be used to scroll the view as well.

– Zoommode

* Zooming into the data: either mark an area in the current view with

your mouse while holding the left mouse button plus the Ctrl key to
zoom to this area or use your mouse wheel to zoom in and out.

* All previous zoom levels are stored in a zoomhistory. The zoomhistory

can be traversed using Ctrl + + or Ctrl + - or themousewheel (scroll

up and down).

* Pressing backspace zooms out to show the full LC-MS map (and

also resets the zoom history).

– Measure mode

* It is activated using the (shift) key.

* Press the left mouse button down while a peak is selected and drag

the mouse to another peak to measure the distance between peaks.

* This mode is implemented in the 1D and 2D mode only.

• Right click on your 2D map and select Switch to 3D view and examine your data in

3D mode

11



• Go back to the 2D view. In 2D mode, visualize your data in different normaliza-

tion modes, use linear, percentage and log-view (icons on the upper left tool

bar).

Note: On macOS, due to a bug in one of the external libraries used by

OpenMS, you will see a small window of the 3D mode when switching

to 2D. Close the 3D tab in order to get rid of it.

• In TOPPView you can also execute TOPP tools. Go to Tools Apply tool (whole layer)

and choose a TOPP tool (e.g., FileInfo) and inspect the results.

2.4 Introduction to KNIME / OpenMS

Using OpenMS in combination with KNIME, you can create, edit, open, save, and run

workflowscombiningTOPPtoolswith thepowerful data analysis capabilitiesofKNIME.

Workflows can be created conveniently in a graphical user interface. The parameters

of all involved tools can be edited within the application and are also saved as part

of the workflow. Furthermore, KNIME interactively performs validity checks during

the workflow editing process, in order to make it more difficult to create an invalid

workflow.

Throughout most parts of this tutorial you will use KNIME to create and execute

workflows. The first step is to make yourself familiar with KNIME. Additional infor-

mation on basic usage of KNIME can be found on the KNIME Getting Started page.

However, the most important concepts will also be reviewed in this tutorial.

2.4.1 Plugin and dependency installation

Note: If you chose the KNIME installer that contains all community contri-

butions, or you received the full installer on our USB Stick you can skip this

section. This is usually the preferred way but only works for stable releases

that were available at the time the full release of KNIME was created. For

bleedingedge functionality (as provided through theKNIMEnightly commu-

nity contributions or in the case we cover prereleases of OpenMS) you need

to perform the actions below to download the plugin from official update

sites.

Beforewe can start with the tutorial we need to install all the required extensions for

KNIME. Since KNIME 3.2.1 the program automatically detects missing plugins when

you open a workflow but to make sure that the right source for OpenMS is chosen,

please follow the instructions here. First, we install some additional extensions that

12

https://tech.knime.org/knime


are required by our OpenMS nodes or used in the Tutorials e.g. for visualization and

file handling.

1. Click on Help Install New Software...

2. From the Work with: drop-down list select http://update.knime.org/analytics-platform/3.4

3. Now select the following plugins from the KNIME & Extensions category

• KNIME Base Chemistry Types & Nodes

• KNIME Chemistry Add-Ons

• KNIME File Handling Nodes (required for OpenMS nodes in general)

• KNIME Interactive R Statistics Integration

• KNIME R Statistics Integration (Windows Binaries) [Windows-only]

• KNIME Report Designer

• KNIME SVG Support

4. Click on ”next” and follow the instructions (you may but don’t need to restart

KNIME now)

5. Click again on Help Install New Software...

6. From the Work with: drop-down list select
http://tech.knime.org/update/community-contributions/trusted/3.4

7. Now select the following plugin from the ”KNIME Community Contributions -

Cheminformatics” category

• RDKit KNIME integration

8. Click on ”next” and follow the instructions and after a restart of KNIME the de-

pendencies will be installed.

You are now ready to install the OpenMS nodes.

• Open KNIME.

• Click on Help Install New Software...

Nowyouneed todecidewhichOpenMSnodes youwant to install. Youmay choosebe-

tween the stable, well-tested release or the unstable, nightly release with extended

functionality.

13



Note: For this tutorial we use a release candidate of the new OpenMS ver-

sion. While not being a full release, it was nevertheless intensively tested to

ensure its functionality for this tutorial. For regular use we still recommend

using the latest stable OpenMS release. Please also note that some of the

workflows shown here require new functionality contained only in the pre-

release version of OpenMS. These will likely not work if transferred to the

current stable, but older OpenMS version.

Instructions for the prerelease:

• In the now open dialog choose Add... (in the upper right corner of the dialog) to
define a new update site. In the opening dialog enter the following details.

Name: OpenMS Update Site

Location: https://abibuilder.informatik.uni-tuebingen.de/archive/openms/knime-plugin/updateSite/RC/

• After pressing OK KNIME will show you all the contents of the added Update

Site.

• Note: From now on, you can use this repository for plugins in the Work with:

drop-down list.

• Select theOpenMS and GKN nodes.

• Follow the instructions and after a restart of KNIME the OpenMS nodes will be

available in the Node repository under “Community Nodes”.

2.4.2 KNIME concepts

A workflow is a sequence of computational steps applied to a single or multiple in-

put data to process and analyze the data. In KNIME such workflows are implemented

graphically by connecting so-called nodes. A node represents a single analysis step

in a workflow. Nodes have input and output ports where the data enters the node

or the results are provided for other nodes after processing, respectively. KNIME dis-

tinguishes between different port types, representing different types of data. The

most common representation of data in KNIME are tables (similar to an excel sheet).

Ports that accept tables aremarked with a small triangle. For OpenMS nodes, we use

a different port type, so called file ports, representing complete files. Those ports

are marked by a small blue box. Filled blue boxes represent mandatory inputs and

empty blue boxes optional inputs. The same holds for output ports, despite you can

deactivate them in the configuration dialog (double-click on node) under the Out-

putTypes tab. After execution, deactivated ports will be marked with a red cross and

downstream nodes will be inactive (not configurable).

14



A typical OpenMS workflow in KNIME can be divided in two conceptually different

parts:

• Nodes for signal and data processing, filtering and data reduction. Here, files

are passed between nodes. Execution times of the individual steps are typically

longer for these types of nodes as they perform the main computations.

• Downstream statistical analysis and visualization. Here, tables are passed be-

tween nodes andmostly internal KNIME nodes or nodes from third-party statis-

tics plugins are used. The transfer from files (produced by OpenMS) and tables

usually happens with our provided Exporter and Reader nodes (e.g. MzTabEx-

porter followed by MzTabReader).

Moreover, nodes can have three different states, indicated by the small traffic light

below the node.

• Inactive, failed, and not yet fully configured nodes are marked red.

• Configured but not yet executed nodes are marked yellow.

• Successfully executed nodes are marked green.

If the node execution fails, the node will switch to the red state. Other anoma-

lies and warnings like missing information or empty results will be presented with a

yellow exclamation mark above the traffic light. Most nodes will be configured as

soon as all input ports are connected. Some nodes need to know about the output

of the predecessor and may stay red until the predecessor was executed. If nodes

still remain in a red state, probably additional parameters have to be provided in the

configuration dialog that can neither be guessed from the data nor filled with sen-

sible defaults. In this case, or if you want to customize the default configuration in

general, you can open the configuration dialog of a node with a double-click on the

node. For all OpenMS nodes you will see a configuration dialog like the one shown in

Figure 3.

Note:OpenMS distinguishes between normal parameters and advanced pa-

rameters. Advanced parameters are by default hidden from the users since

they should only rarely be customized. In case youwant to have a look at the

parameters or need to customize them in one of the tutorials you can show

them by clicking on the checkbox Show advanced parameter in the lower part of
the dialog.

The dialog shows the individual parameters, their current value and type, and, in

the lower part of the dialog, the documentation for the currently selected param-

eter. Please also note the tabs on the top of the configuration dialog. In the case of

15



Figure 3: Node configuration dialog of an OpenMS node.

OpenMS nodes, there will be another tab called OutputTypes. It contains dropdown

menus for every output port that let you select the output filetype that youwant the

node to return (if the tool supports it). For optional output ports you can select Inac-

tive such that the port is crossed out after execution and the associated generation

of the file and possible additional computations are not performed. Note that this

will deactivate potential downstream nodes connected to this port.

2.4.3 Overview of the graphical user interface

The graphical user interface (GUI) of KNIME consists of different components or so-

called panels that are shown in Figure 4. We will briefly introduce the individual pan-

els and their purposes below.

Workflow Editor: Theworkfloweditor is the central part of theKNIMEGUI. Here you

assemble the workflow by adding nodes from the Node Repository via ”drag &

drop”. For quick creation of a workflow, note that double-clicking on a node in

the repository automatically connects it to the selected node in the workbench

(connecting all the inputs with as many fitting outputs of the last node). Man-

ually, nodes can be connected by clicking on the output port of one node and

dragging the edge until releasing the mouse at the desired input port of the

next node. Deletions are possible by selecting nodes and/or edges and press-

ing Del or ( Fn +) Backspace depending on your OS and settings. Multiselection

16



Figure 4: The KNIME workbench.

happens via dragging rectangles with the mouse or adding elements to the se-

lection by clicking them while holding down Ctrl .

KNIME Explorer: Shows a list of availableworkflows (also calledworkflowprojects).

You can open a workflow by double-clicking it. A new workflow can be created

with a right-click in theWorkflowExplorer followedby selecting New KNIME Workflow... .
Remember to save your workflow often with the Ctrl + S shortcut.

Workflow Coach (since KNIME 3.2.1): Showsa list of suggested followingnodes, based

on the last added/clicked nodes. When you are not sure which node to choose

next, you have a reasonable suggestion based on other users behavior there.

Connect them to the last node with a double-click.

Node Repository: Shows all nodes that are available in your KNIME installation. Ev-

eryplugin you installwill providenewnodes that canbe foundhere. TheOpenMS

nodes can be found in Community Nodes OpenMS . Nodes for managing files (e.g.,

Input Files or Output Folders) can be found in Community Nodes GenericKnimeNodes .
You can search the node repository by typing the node name into the small text

box in the upper part of the node repository.

Outline: TheOutlinepanel contains a small overviewof the completeworkflow. While

of limited use when working on a small workflow, this feature is very helpful as

soon as theworkflows get bigger. You can adjust the zoom level of the explorer

17



by adjusting the percentage in the toolbar at the top of KNIME.

Console: In the console panel warning and errormessages are shown. This panel will

provide helpful information if one of the nodes failed or shows a warning sign.

Node Description: As soon as a node is selected, the Node Description window will

show the documentation of the node including documentation for all its param-

eters andespecially their in- andoutputs, such that you knowwhat types of data

nodesmay produce or expect. For OpenMS nodes youwill also find a link to the

tool page of the online documentation.

2.4.4 Creating workflows

Workflows can easily be created by a right click in theWorkflow Explorer followed by

clicking on New KNIME Workflow... .

2.4.5 Sharing workflows

To be able to share aworkflowwith others, KNIME supports the import and export of

completeworkflows. To export aworkflow, select it in theWorkflowExplorer and se-

lect File Export KNIME Workflow... . KNIME will export workflows as a knwf file contain-

ing all the information on nodes, their connections, and their parameter configura-

tion. Those knwf files can again be imported by selecting File Import KNIME Workflow... .

Note: For your convenience we added all workflows discussed in this tuto-

rial to the Workflows folder on the USB Stick. Additionally, the workflow

files can be found on our GitHub repository. If you want to check your own

workflow by comparing it to the solution or got stuck, simply import the full

workflow from the corresponding knwf file.

2.4.6 Duplicating workflows

In this tutorial, a lot of the workflows will be created based on the workflow from a

previous task. To keep the intermediate workflows, we suggest you create copies of

your workflows so you can see the progress. To create a copy of your workflow, save

it, close it and follow the next steps.

• Right click on the workflow you want to create a copy of in the Workflow Ex-

plorer and select Copy .

• Right click again somewhere on the workflow explorer and select Paste .

18

https://github.com/OpenMS/Tutorials


• This will create a workflow with same name as the one you copied with a (2)

appended.

• To distinguish them later on you can easily rename the workflows in the Work-

flow Explorer by right clicking on the workflow and selecting Rename .

Note: To rename a workflow it has to be closed, too.

2.4.7 A minimal workflow

Let us now start with the creation of our very first, very simple workflow. As a first

step, we will gather some basic information about the data set before starting the

actual development of a data analysis workflow. This minimal workflow can also be

used to check if all requirements are met and that your system is compatible.

• Create a new workflow.

• Addan Input Filenodeandan Output Foldernode (tobe found in Community Nodes
GenericKnimeNodes IO anda FileInfonode (tobe found in the category Community Nodes
OpenMS File Handling ) to the workflow.

• Connect the Input File node to the FileInfo node, and the first output port of

the FileInfo node to the Output Folder node.

Note: In case you are unsure about which node port to use, hovering

the cursor over the port in question will display the port name and

what kind of input it expects.

The completeworkflow is shown in Figure 5. FileInfo can produce two different

kinds of output files.

• All nodes are still marked red, since we are missing an actual input file. Double-

click the Input File node and select Browse . In the file system browser select

Example_Data Introduction datasets tiny velos005614.mzML and click Open .
Afterwards close the dialog by clicking Ok .

Note:Make sure to use the “tiny” version this time, not “small”, for the

sake of faster workflow execution.

• The Input File node and the FileInfo node should now have switched to yel-

low, but the Output Folder node is still red. Double-click on the Output Folder

node and click on Browse to select an output directory for the generated data.

19



Node 1 Node 3Node 2

Input File Output FileFileInfo

Node 1 Node 3Node 2

Input File Output FileFileInfo

Figure 5: A minimal workflow calling FileInfo on a single file.

• Great! Your first workflow is now ready to be run. Press + F7 (shift key + F7;

or the button with multiple green triangles in the KNIME Toolbar) to execute

the complete workflow. You can also right click on any node of your workflow

and select Execute from the context menu.

• The traffic lights tell you about the current status of all nodes in your workflow.

Currently running tools show either a progress in percent or a moving blue bar,

nodes waiting for data show the small word “queued”, and successfully exe-

cuted ones become green. If something goes wrong (e.g., a tool crashes), the

light will become red.

• In order to inspect the results, you can just right-click the Output Folder node

and select View: Open the output folder . You can then open the text file and inspect
its contents. You will find some basic information of the data contained in the

mzML file, e.g., the total number of spectra and peaks, the RT and m/z range,

and howmany MS1 and MS2 spectra the file contains.

Workflows are typically constructed to process a large number of files automat-

ically. As a simple example, consider you would like to gather this information for

more than one file. We will now modify the workflow to compute the same informa-

tion on three different files and then write the output files to a folder.

• We start from the previous workflow.

• First we need to replace our single input file with multiple files. Therefore we

add the Input Files node from the category Community Nodes GenericKnimeNodes
IO .

• To select the files we double-click on the Input Files node and click on Add . In
thefilesystembrowserweselect all threefiles fromthedirectory Example_Data

Introduction datasets tiny. And close the dialog with Ok .

• We now add two more nodes: the ZipLoopStart and the ZipLoopEnd node from

the category Community Nodes GenericKnimeNodes Flow .

• Afterwardsweconnect the Input Filesnode to thefirst port of the ZipLoopStart

node, thefirst port of the ZipLoopStartnode to the FileInfonode, thefirst out-

put port of the FileInfonode to thefirst input port of the ZipLoopEndnode, and

20



Node 3Node 1 Node 2 Node 4 Node 5

FileInfoInput Files ZipLoopStart ZipLoopEnd Output Folder

Node 3Node 1 Node 2 Node 4 Node 5

FileInfoInput Files ZipLoopStart ZipLoopEnd Output Folder

Figure 6: A minimal workflow calling FileInfo on multiple files in a loop.

the first output port of the ZipLoopEnd node to the Output Folder node (NOT

to the Output File). The complete workflow is shown in Figure 6

• The workflow is already complete. Simply execute the workflow and inspect

the output as before.

In case you had trouble to understand what ZipLoopStart and ZipLoopEnd do -

here is a brief explanation:

• The Input Files node passes a list of files to the ZipLoopStart node.

• The ZipLoopStart node takes the files as input, but passes the single files se-

quentially (that is: one after the other) to the next node.

• The ZipLoopEnd collects the single files that arrive at its input port. After all files

have been processed, the collected files are passed again as file list to the next

node that follows.

2.4.8 Advanced topic: Meta nodes

Workflowscanget rather complexandmaycontaindozensor evenhundredsofnodes.

KNIME provides a simple way to improve handling and clarity of large workflows:

Meta Nodes allow to bundle several nodes into a single Meta Node.

Select multiple nodes (e.g. all nodes of the ZipLoop including the start

and end node). To select a set of nodes, draw a rectangle around them

with the left mouse button or hold Ctrl to add/remove single nodes

from the selection. Pro-tip: There is a Select Loop optionwhen you right-
click anode in a loop, thatdoesexactly that for you. Then, open the con-

textmenu (right-clickonanode in the selection) and select Collapse into Meta Node .
Enter a caption for the Meta Node. The previously selected nodes are

now contained in the Meta Node. Double-clicking on the Meta Node will

display the contained nodes in a new tab window.

Task

21



Freeze/wrap themeta node to let it behave like an encapsulated single

node. First select the Meta Node, open the context menu (right-click)

and select Meta Node Wrap . The differences between Meta Nodes and

their wrapped counterparts are marginal (and only apply when expos-

ing user inputs and workflow variables). Therefore we suggest to use

standard meta nodes to clean up your workflow and cluster common

subparts until you actually notice their limits.

Task

Undo the packaging. First select the (Wrapped) Meta Node, open the

context menu (right-click) and select (Wrapped) Meta Node Expand .

Task

2.4.9 Advanced topic: R integration

KNIME provides a large number of nodes for a wide range of statistical analysis, ma-

chine learning, data processing, and visualization. Still, more recent statistical analy-

sismethods, specialized visualizations or cutting edge algorithmsmay not be covered

in KNIME. In order to expand its capabilities beyond the readily available nodes, ex-

ternal scripting languages can be integrated. In this tutorial, we primarily use scripts

of the powerful statistical computing language R. Note that this part is considered

advanced and might be difficult to follow if you are not familiar with R. In this case

you might skip this part.

R View (Table) allows to seamlessly include R scripts into KNIME.Wewill demon-

strate on a minimal example how such a script is integrated.

First we need some example data in KNIME, which we will generate us-

ing the Data Generator node. You can keep the default settings and

execute the node. The table contains four columns, each containing

random coordinates and one column containing a cluster number (Clus-

ter_0 to Cluster_3). Now place a R View (Table) node into the work-

flow and connect the upper output port of the Data Generator node

to the input of the R View (Table) node. Right-click and configure the

node. If you get an error message like ”Execute failed: R_HOME does

not contain a folder with name ’bin’.” or ”Execution failed: R Home is in-

valid.”: please change the R settings in the preferences. To do so open

Task

22



File Preferences KNIME R and enter the path to your R installation

(the folder that contains the bin directory (e.g., C: Program Files R

R-3.3.1).

If you get an error message like: ”Execute failed: Could not find

Rserve package. Please install it in your R installation by running

”install.packages(’Rserve’)”.” You may need to run your R binary as ad-

ministrator (Inwindowsexplorer: right-click ”Runas administrator”) and

enter install.packages(’Rserve’) to install the package.

If R is correctly recognizedwe can start writing an R script. Consider

that we are interested in plotting the first and second coordinates and

color them according to their cluster number. In R this can be done in a

single line. In the R View (Table) text editor, enter the following code:

plot(x=knime.in$Universe_0_0, y=knime.in$Universe_0_1, main="Plotting column ←↩
Universe_0_0 vs. Universe_0_1", col=knime.in$"Cluster Membership")

Explanation: The table provided as input to the R View (Table)

node is available as R data.frame with name knime.in. Columns (also

listed on the left side of the R View window) can be accessed in the

usual R way by first specifying the data.frame name and then the col-

umn name (e.g. knime.in$Universe_0_0). plot is the plotting function

we use to generate the image. We tell it to use the data in column

Universe_0_0of thedataframeobject knime.in (denotedas knime.in$Universe_0_1)

as x-coordinateand theother column knime.in$Universe_0_1as y-coordinate

in the plot. main is simply the main title of the plot and col the col-

umn that is used to determine the color (in this case it is the Cluster

Membership column).

Now press the Eval script and Show plot buttons.

Note:Note thatweneeded toput someextraquotes around Cluster Membership.

If we omit those, R would interpret the column name only up to the first

space (knime.in$Cluster) which is not present in the table and leads to an

error. Quotes are regularly needed if column names contain spaces, tabs or

other special characters like $ itself.

23



3 Label-free quantification of peptides

3.1 Introduction

In this chapter, wewill build aworkflowwithOpenMS / KNIME to quantify a label-free

experiment. Label-free quantification is a method aiming to compare the relative

amounts of proteins or peptides in two or more samples. We will start from the min-

imal workflow of the last chapter and, step-by-step, build a label-free quantification

workflow.

3.2 Peptide Identification

As a start, we will extend the minimal workflow so that it performs a peptide iden-

tification using the OMSSA [7] search engine. Since OpenMS version 1.10, OMSSA is

included in the OpenMS installation, so you do not need to download and install it

yourself.

• Let’s start by replacing the input files in our Input Files node by the three

mzMLfiles in Example_Data Labelfree datasets lfq_spikein_dilution_1-3.mzML.

This is a reduced toy dataset where each of the three runs contains a constant

background of S. pyogenes peptides as well as human spike-in peptides in dif-

ferent concentrations. [8]

• Instead of FileInfo, we want to perform OMSSA identification, so we simply re-

place the FileInfo node with the OMSSAAdapter node Community Nodes OpenMS
Identification , and we are almost done. Just make sure you have connected the

ZipLoopStart node with the in port of the OMSSAAdapter node.

• OMSSA, like most mass spectrometry identification engines, relies on search-

ing the input spectra against sequence databases. Thus, we need to introduce

a search database input. As we want to use the same search database for all of

our input files, we can just add a single Input File node to the workflow and

connect it directly with the OMSSAAdapter database port. KNIME will automati-

cally reuse this Input node each time a newZipLoop iteration is started. In order

to specify the database, select Example_Data Labelfree databases

s_pyo_sf370_potato_human_target_decoy_with_contaminants.fasta, andwehave

a very basic peptide identification workflow.

Note: You might also want to save your new identification workflow

under a different name. Have a look at Section 2.4.6 for information

on how to create copies of workflows.

24



• The result of a single OMSSA run is basically a number of peptide-spectrum-

matches (PSM) with a score each, and these will be stored in an idXML file. Now

we can run the pipeline and after execution is finished, we can have a first look

at the results: just open the input files folder with a file browser and from there

open an mzML file in TOPPView.

• Here, you can annotate this spectrum data file with the peptide identification

results. Choose Tools Annotate with identification from the menu and select the

idXML file that OMSSAAdapter generated (it is located within the output direc-

tory that you specified when starting the pipeline).

• On the right, select the tab Identification view . Using this view, you can see all iden-
tified peptides and browse the corresponding MS2 spectra.

Note:Opening the output file of OMSSAAdapter (the idXMLfile) directly

is also possible, but the direct visualization of an idXML file is less use-

ful.

• The search results stored in the idXML file can also be read back into a KNIME

table for inspection and subsequent analyses: Add a TextExporter node from
Community Nodes OpenMS File Handling to your workflow and connect the output

port of your OMSSAAdapter (the same port your ZipLoopEnd is connected to) to its

input port. This tool will convert the idXML file to a more human-readable text

filewhich can also be read into a KNIME table using the IDTextReader node. Add

an IDTextReader node ( Community Nodes OpenMS Conversion ) after TextExporter
andexecute it. Nowyoucan right-click IDTextReaderand select ID Table tobrowse
your peptide identifications.

• From here, you can use all the tools KNIME offers for analyzing the data in this

table. As a simple example, you could add a Histogram node (from category
Data Views ) node after IDTextReader, double-click it, select peptide_charge as

binning column, hit OK , andexecute it. Right-clickingand selecting View: Histogram view

will open a plot showing the charge state distribution of your identifications.

In the next step, we will tweak the parameters of OMSSA to better reflect the

instrument’s accuracy. Also, we will extend our pipeline with a false discovery rate

(FDR) filter to retain only those identifications that will yield an FDR of < 1 %.

• Open the configuration dialog of OMSSAAdapter. The dataset was recorded us-

ing an LTQ Orbitrap XL mass spectrometer, so we can set the precursor mass

tolerance to a smaller value, say 10 ppm. Set precursor_mass_tolerance to 10

and

precursor_error_units to ppm.

25



Note: Whenever you change the configuration of a node, the node

as well as all its successors will be reset to the Configured state (all

node results are discarded and need to be recalculated by executing

the nodes again).

• Setmax_precursor_charge to5, inorder toalso search forpeptideswith charges

up to 5.

• Add Carbamidomethyl (C) as fixed modification and Oxidation (M) as variable

modification.

Note: To add a modification click on the empty value field in the con-

figuration dialog to open the list editor dialog. In the new dialog click
Add . Then select the newly addedmodification to open the drop down

list where you can select the correct modification.

• A commonstep in analyis is to searchnotonly against a regular proteindatabase,

but to also search against a decoy database for FDR estimation. The fasta file

we used before already contains such a decoy database. For OpenMS to know

whichOMSSAPSMcame fromwhichpart of thefile (i.e. target versusdecoy), we

have to index the results. Therefore, extend theworkflowwitha PeptideIndexer

node Community Nodes OpenMS ID Processing . This node needs the idXML as input

as well as the database file.

Note: You can direct the files of an Input File node to more than just

one destination port.

• The decoys in the database are prefixed with “DECOY_”, so we have to set de-

coy_string to DECOY_ and decoy_string_position to prefix in the configuration

dialog of PeptideIndexer.

• Nowwe can go for the FDR estimation, which the FalseDiscoveryRate nodewill

calculate for us (you will find it in Community Nodes OpenMS ID Processing ). As we
have a combined search database and thus only one idXML per mzML we will

only use the in port of the FalseDiscoveryRate node.

• Inorder to set theFDR level to 1%,weneedan IDFilternode from Community Nodes
OpenMS ID Processing . Configuring its parameter score→pep to 0.01will do the

trick. TheFDRcalculations (embedded in the idXML) fromthe FalseDiscoveryRate

node will go into the in port of the IDFilter node.

• Execute your workflow and inspect the results using IDTextReader like you did

before. How many peptides did you identify at this FDR threshold?

26



Note: The finished identificationworkflow is now sufficiently complex

that we might want to encapsulate it in a Meta node. For this, select

all nodes inside the ZipLoop (including the Input File node) and right-

click to select Collapse into Meta node and name it ID. Meta nodes are use-

ful when you construct even larger workflows and want to keep an

overview.

Figure 7: OMSSA ID pipeline including FDR filtering.

3.2.1 Bonus task: identification using several search engines

Note: If you are ahead of the tutorial or later on, you can further improve

your FDR identification workflow by a so-called consensus identification us-

ing several search engines. Otherwise, just continue with section 3.3.

It has become widely accepted that the parallel usage of different search engines

can increase peptide identification rates in shotgun proteomics experiments. The

ConsensusID algorithm is based on the calculation of posterior error probabilities

(PEP) and a combination of the normalized scores by considering missing peptide se-

quences.

• Next to the OMSSAAdapter add a XTandemAdapter
Community Nodes OpenMS Identification nodeand set its parameters andports anal-

ogously to the OMSSAAdapter. InXTandem, togetmoreevenlydistributed scores,

we decrease the number of candidates a bit by setting the precursor mass tol-

erance to 5 ppm and the fragment mass tolerance to 0.1 Da.

• To calculate thePEP, introduceeacha IDPosteriorErrorProbability Community Nodes
OpenMS ID Processing node to the output of each ID engine adapter node. This

will calculate the PEP to each hit and output an updated idXML.

27



• To create a consensus, we must first merge these two files with a FileMerger

node Community Nodes GenericKnimeNodes Flow so we can then merge the corre-

sponding IDs with a IDMerger Community Nodes OpenMS File Handling .

• Nowwecan createa consensus identificationwith the ConsensusID Community Nodes
OpenMS ID Processing node. We can connect this to the PeptideIndexer and go

along with our existing FDR filtering.

Note:By default, X!Tandem takes additional enzyme cutting rules into

consideration (besides the specified tryptic digest). Thus for the tuto-

rial files, youhave to set PeptideIndexer’s enzyme→ specificity param-

eter to none to accept X!Tandems non-tryptic identifications as well.

Figure 8: Complete consensus identification workflow.

28



3.3 Quantification

Now that we have successfully constructed a peptide identification pipeline, we can

add quantification capabilities to our workflow.

• Adda FeatureFinderCentroidednode from Community Nodes OpenMS Quantitation

which gets input from the first output port of the ZipLoopStart node. Also,

add an IDMapper node (from Community Nodes OpenMS ID Processing ) which re-

ceives input from the FeatureFinderCentroided node and the ID Meta node (or

IDFilter node if you haven’t used the Meta node). The output of the IDMapper

is then connected to an in port of the ZipLoopEnd node.

• FeatureFinderCentroided finds and quantifies peptide ion signals contained in

the MS1 data. It reduces the entire signal, i.e., all peaks explained by one and

the same peptide ion signal, to a single peak at the maximum of the chromato-

graphic elution profile of the monoisotopic mass trace of this peptide ion and

assigns an overall intensity.

• FeatureFinderCentroidedproduces a featureXMLfile asoutput, containingonly

quantitative information of so-far unidentified peptide signals. In order to an-

notate thesewith the corresponding ID information,weneed the IDMappernode.

• Run your pipeline and inspect the results of the IDMapper node in TOPPView.

Open the mzML file of your data to display the raw peak intensities.

• To assess how well the feature finding worked, you can project the features

contained in the featureXML file on the raw data contained in the mzML file.

To this end, open the featureXML file in TOPPView by clicking on File Open file

and add it to a new layer (Open in New layer ). The features are now visualized on

top of your raw data. If you zoom in on a small region, you should be able to see

the individual boxes around features that have been detected (see Fig. 9). If you

hover over the the feature centroid (small circle indicating the chromatographic

apex of monoisotopic trace) additional information of the feature is displayed.

Note: The chromatographic RT range of a feature is about 30-60 s and

its m/z range around 2.5 m/z in this dataset. If you have trouble zoom-

ing in on a feature, select the full RT range and zoom only into the

m/z dimension by holding down Ctrl ( cmd onmacOS) and repeatedly

dragging a narrow box from the very left to the very right.

• You can seewhich featureswere annotatedwith a peptide identification byfirst

selecting the featureXML file in the Layerswindow on the upper right side and

29



Figure 9: Visualization of detected features (boxes) in TOPPView.

then clicking on the icon with the letters A, B and C on the upper icon bar. Now,

click on the small triangle next to that icon and select Peptide identification.

Figure 10: Extended workflow featuring peptide identification and quantification.

3.4 Combining quantitative information across several label-free

experiments

So far, we successfully performed peptide identification as well as quantification on

individual LC-MS runs. For differential label-free analyses, however, we need to iden-

tify and quantify corresponding signals in different experiments and link them to-

gether to compare their intensities. Thus, we will now run our pipeline on all three

available input files and extend it a bit further, so that it is able to find and link fea-

tures across several runs.

• To find features across several maps, we first have to align them to correct for

retention time shifts between the different label-freemeasurements. With the

30



Figure 11: Complete identification and label-free quantification workflow.

MapAlignerPoseClustering in Community Nodes OpenMS Map Alignment , we canalign
corresponding peptide signals to each other as closely as possible by applying

a transformation in the RT dimension.

Note: MapAlignerPoseClustering consumes several featureXML files

and its output should still be several featureXML files containing the

same features, butwith the transformedRTvalues. In its configuration

dialog, make sure that OutputTypes is set to featureXML.

• With the FeatureLinkerUnlabeledQTnode in Community Nodes OpenMS Map Alignment ,
we can then perform the actual linking of corresponding features. Its output is

a consensusXML file containing linked groups of corresponding features across

the different experiments.

• Since the overall intensities can vary a lot betweendifferentmeasurements (for

example, because the amount of injected analytes was different), we apply the

ConsensusMapNormalizer in Community Nodes OpenMS Map Alignment as a last pro-
cessing step. Configure its parameters with setting algorithm_type to median.

It will then normalize the maps in such a way that the median intensity of all

input maps is equal.

• Finally, we export the resulting normalized consensusXML file to a csv format

using TextExporter. Connect its out port to a new Output Folder node.

Note: You can specify the desired column separation character in the

parameter settings (by default, it is set to “ ” (a space)). The output file

of TextExporter can also be openedwith external tools, e.g., Microsoft

Excel, for downstream statistical analyses.

31



3.4.1 Basic data analysis in KNIME

For downstreamanalysis of the quantification resultswithin the KNIMEenvironment,

you can use the ConsensusTextReader node in Community Nodes OpenMS Conversion in-

stead of the Output Folder node to convert the output into a KNIME table (indicated

by a triangle as output port). After running the node you can view the KNIME table

by right-clicking on the ConsensusTextReader and selecting Consensus Table . Every row
in this table corresponds to a so-called consensus feature, i.e., a peptide signal quan-

tified across several runs. The first couple of columns describe the consensus feature

as awhole (averageRT andm/z across themaps, charge, etc.). The remaining columns

describe the exact positions and intensities of the quantified features separately for

all input samples (e.g., intensity_0 is the intensity of the feature in the first input file).

The last 11 columns contain information on peptide identification.

Figure 12: Simple KNIME data analysis example for LFQ.

• Now, let’s saywewant to plot the log intensity distributions of the human spike-

in peptides for all input files. In addition, we will plot the intensity distributions

of the background peptides.

• As shown in Fig. 12, add a Row Splitternode ( Data Manipulation Row Filter ) after
ConsensusTextReader. Double-click it to configure. The human spike-in peptides

have accessions starting with “hum”. Thus, set the column to apply the test to:

accessions, select pattern matching as matching criterion, enter hum* into the

corresponding text field, and check the contains wild cards box. Press OK and

execute the node.

• Row Splitter produces two output tables: the first one contains all rows from

the input table matching the filter criterion, and the second table contains all

other rows. You can inspect the tables by right-clicking and selecting Filtered

and Filtered Out. The former table should now only contain peptides with a

32



human accession, whereas the latter should contain all remaining peptides (in-

cluding unidentified ones).

• Now, since we only want to plot intensities, we can add a Column Filter node
Data Manipulation Column Filter , connect its input port to the Filteredoutputport
of the Row Filter, and open its configuration dialog. We could either manually

select the columns we want to keep, or, more elegantly, select Wildcard/Regex

Selection and enter intensity_? as the pattern. KNIME will interactively show

you which columns your pattern applies to while you’re typing.

• Sincewewant toplot log intensities, wewill nowcompute the logof all intensity

values in our table. The easiestway todo this in KNIME is a small piece of R code.

Add an R Snippet node R after Column Filter and double-click to configure.

In the R Script text editor, enter the following code:

x <− knime.in # store copy of input table in x
x[x == 0] <− NA # replace all zeros by NA (= missing value)
x <− log10(x) # compute log of all values
knime.out <− x # write result to output table

• Nowwe are ready to plot! Add a Box Plot node Views after the R Snippet node,

execute it, and open its view. If everything went well, you should see a signifi-

cant fold change of your human peptide intensities across the three runs.

• In order to verify that the concentration of background peptides is constant in

all three runs, you can just copy and paste the three nodes after Row Splitter

and connect the duplicated Column Filter to the second output port (Filtered

Out) of Row Splitter, as shown in Fig. 12. Execute and open the view of your

second Box Plot.

• That’s it! You have constructed an entire identification and label-free quantifi-

cation workflow including a simple data analysis using KNIME!

Note: For further inspiration you might want to take a look at the more ad-

vanced KNIME data analysis examples in the metabolomics tutorial.

33



4 Protein Inference

In the last chapter, we have successfully quantified peptides in a label-free experi-

ment. As a next step, we will further extend this label-free quantification workflow

byprotein inference andprotein quantification capabilities. Thisworkflowuses some

of the more advanced concepts of KNIME, as well as a few more nodes containing R

code. For these reasons, you will not have to build it yourself. Instead, we have al-

ready prepared and copied this workflow to the USB sticks. Just import Workflows

> labelfree_with_protein_quantification.knwf intoKNIMEvia File Import KNIME workflow
Select file and double-click the imported workflow in order to open it.

Before you can execute the workflow, you again have to correct the locations of

thefiles in the Input Files nodes (don’t forget the one for the FASTAdatabase inside

the “ID” meta node). Try and run your workflow by executing all nodes at once.

4.1 Extending the LFQ workflow by protein inference and quan-

tification

We have made the following changes compared to the original label-free quantifica-

tion workflow from the last chapter:

• First, we have added a ProteinQuantifier node and connected its input port to

the output port of ConsensusMapNormalizer.

• This already enables protein quantification. ProteinQuantifier quantifies pep-

tides by summarizing over all observed charge states and proteins by summariz-

ing over their quantified peptides. It stores two output files, one for the quan-

tified peptides and one for the proteins.

• In this example, we consider only the protein quantification output file, which

is written to the first output port of ProteinQuantifier

• Because there is nodedicatednode inKNIME to readback theProteinQuantifier

output file format into a KNIME table, we have to use a workaround. Here, we

have added an additional URI Port to Variable node which converts the name

of the output file to a so-called “flow variable” in KNIME. This variable is passed

on to thenext node CSV Reader, where it is used to specify thenameof the input

file to be read. If you double-click on CSV Reader, youwill see that the text field,

where you usually enter the location of the CSV file to be read, is greyed out.

Instead, the flow variable is used to specify the location, as indicated by the

small green button with the “v=?” label on the right.

34



• The table containing the ProteinQuantifier results is filtered one more time in

order to remove decoy proteins. You can have a look at the final list of quanti-

fied protein groups by right-clicking the Row Filter and selecting Filtered .

• By default, i.e., when the second input port protein_groups is not used, Pro-

teinQuantifier quantifies proteins using only the unique peptides, which usually

results in rather low numbers of quantified proteins.

• In this example, however, we have performed protein inference using Fido and

used the resulting protein grouping information to also quantify indistinguish-

able proteins. In fact, we also used a greedymethod in FidoAdapter (parameter

greedy_group_resolution touniquely assign thepeptidesof agroup to themost

probable protein(s) in the respective group. This boosts the number of quan-

tifications but slightly raises the chances to yield distorted protein quantities.

• As aprerequisite for usingFidoAdapter,wehaveaddedan IDPosteriorErrorProbability

nodewithin the IDmetanode, between theXTandemAdapter (note the replace-

ment of OMSSA because of ill-calibrated scores) and PeptideIndexer. We have

set its parameter prob_correct to true, so it computes posterior probabilities in-

stead of posterior error probabilities (1 - PEP). These are stored in the resulting

idXML file and later on used by the Fido algorithm. Also note that we excluded

FDR filtering from the standard meta node. Harsh filtering before inference

impacts the calibration of the results. Since we filter peptides before quantifi-

cation though, no potentially random peptides will be included in the results

anyway.

• Next, we have added a third outgoing connection to our IDmeta node and con-

nected it to the second input port of ZipLoopEnd. Thus, KNIME will wait until

all input files have been processed by the loop and then pass on the resulting

list of idXML files to the subsequent IDMerger node, which merges all identifi-

cations from all idXML files into a single idXML file. This is done to get a unique

assignment of peptides to proteins over all samples.

• Instead of the meta node Protein inference with FidoAdapter, we could have

just used a FidoAdapter node ( Community Nodes OpenMS ID Processing ). However,
themetanodecontains anadditional subworkflowwhich, besides calling FidoAdapter,

performs a statistical validation (e.g. (pseudo) receiver operating curves; ROCs)

of the protein inference results using some of themore advanced KNIME and R

nodes. Themetanodealso showshowtouseMzTabExporter andMzTabReader.

35



4.2 Statistical validation of protein inference results

In the following, wewill explain the subworkflow contained in the Protein inference

with FidoAdaptermeta node.

4.2.1 Data preparation

For downstream analysis on the protein ID level in KNIME, it is again necessary to

convert the idXML-file-format result generated from FidoAdapter into a KNIME table.

• We use the MzTabExporter to convert the inference results from FidoAdapter to

a human readable, tab-separatedmzTab file. mzTab contains multiple sections,

that are all exportedbydefault, if applicable. Thisfile,with its different sections

can again be read by the MzTabReader that produces one output in KNIME table

format (triangle ports) for each section. Some portsmight be empty if a section

did not exist. Of course, we continue by connecting the downstreamnodeswith

the protein section output (second port).

• Since the protein section contains single proteins as well as protein groups, we

filter them for single proteins with the standard Row Filter.

4.2.2 ROC curve of protein ID

ROC Curves (Receiver Operating Characteristic curves) are graphical plots that visu-

alize sensitivity (true-positive rate) against fall-out (false positive rate). They are of-

ten used to judge the quality of a discrimination method like e.g., peptide or pro-

tein identification engines. ROC Curve already provides the functionality of drawing

ROC curves for binary classification problems. When configuring this node, select the

opt_global_target_decoy column as the class (i.e. target outcome) column. We want

to find out, how good our inferred protein probability discriminates between them,

therefore add

best_search_engine_score[1] (the inference engine score is treated like a peptide

search engine score) to the list of ”Columns containing positive class probabilities”.

View the plot by right-clicking and selecting View: ROC Curves . A perfect classifier has

an area under the curve (AUC) of 1.0 and its curve touches the upper left of the plot.

However, in protein or peptide identification, the ground-truth (i.e., which target

identifications are true,whichare false) is usually not known. Instead, so calledpseudo-

ROCCurves are regularly used to plot the number of target proteins against the false

discovery rate (FDR) or its protein-centric counterpart, the q-value. The FDR is ap-

proximated by using the target-decoy estimate in order to distinguish true IDs from

false IDs by separating target IDs from decoy IDs.

36



4.2.3 Posterior probability and FDR of protein IDs

ROC curves illustrate the discriminative capability of the scores of IDs. In the case

of protein identifications, Fido produces the posterior probability of each protein as

the output score. However, a perfect score should not only be highly discriminative

(distinguishing true from false IDs), it should also be “calibrated” (for probability in-

dicating that all IDs with reported posterior probability scores of 95% should roughly

have a 5% probability of being false. This implies that the estimated number of false

positives can be computed as the sum of posterior error probabilities ( = 1 - poste-

rior probability) in a set, divided by the number of proteins in the set. Thereby a

posterior-probability-estimated FDR is computed which can be compared to the ac-

tual target-decoyFDR.Wecanplot calibration curves tohelpus visualize thequality of

the score (when the score is interpreted as a probability as Fido does), by comparing

how similar the target-decoy estimated FDR and the posterior probability estimated

FDR are. Good results should show a close correspondence between these twomea-

surements, although a non-correspondence does not necessarily indicate wrong re-

sults.

The calculation is done by using a simple R script in R snippet. First, the target

decoy protein FDR is computed as the proportion of decoy proteins among all signifi-

cant protein IDs. Then posterior probabilistic-driven FDR is estimated by the average

of the posterior error probability of all significant protein IDs. Since FDR is the prop-

erty for a group of protein IDs, we can also calculate a local property for each protein:

the q-value of a certain protein ID is the minimum FDR of any groups of protein IDs

that contain this protein ID. We plot the protein ID results versus two different kinds

of FDR estimates in R View(Table) (see Fig. 14).

Figure 13: The workflow of statistical analysis of protein inference results

37



Figure 14: the pseudo-ROC Curve of protein IDs. The accumulated number of protein IDs is plotted
on two kinds of scales: target-decoy protein FDR and Fido posterior probability estimated FDR. The
largest value of posterior probability estimated FDR is already smaller than 0.04, this is because the
posterior probability output from Fido is generally very high.

38



5 Label-free quantification of metabolites

5.1 Introduction

Quantitationand identificationof chemical compoundsarebasic tasks inmetabolomic

studies. In this tutorial sessionwe construct aUPLC-MSbased, label-free quantitation

and identification workflow. Following quantitation and identification we then per-

form statistical downstream analysis to detect quantitation values that differ signif-

icantly between two conditions. This approach can, for example, be used to detect

biomarkers. Here, we use two spike-in conditions of a dilution series (0.5 mg/l and

10.0mg/l, male blood background, measured in triplicates) comprising seven isotopi-

cally labeled compounds. The goal of this tutorial is to detect and quantify these

differential spike-in compounds against the complex background.

5.2 Quantifying metabolites across several experiments

For the metabolite quantification we choose an approach similar to the one used for

peptides, but this time based on theOpenMS FeatureFinderMetabomethod. This fea-

ture finder again collects peak picked data into individual mass traces. The reason

whywe need a different feature finder for metabolites lies in the step after trace de-

tection: the aggregation of isotopic traces belonging to the same compound ion into

the same feature. Compared to peptideswith their averaginemodel, smallmolecules

have very different isotopic distributions. To group small molecule mass traces cor-

rectly, an aggregation model tailored to small molecules is thus needed.

• Create a new workflow called for instance ”Metabolomics”.

• Addan Input Filesnodeandconfigure itwith allmzMLfiles from Example_Data

Metabolomics datasets.

• Add a ZipLoopStart node and connect the Input Files node to the first port of

the ZipLoopStart node.

• Adda FeatureFinderMetabonode (from Community Nodes OpenMS Quantitation and
connect the first output port of the ZipLoopStart to the FeatureFinderMetabo.

• For an optimal result adjust the following settings. Please note that some of

these are advanced parameters.

39



parameter value

algorithm→ common→ chrom_fwhm 8.0

algorithm→mtd→ trace_termination_criterion sample_rate

algorithm→mtd→min_trace_length 3.0

algorithm→mtd→max_trace_length 600.0

algorithm→ epd→width_filtering off

• Add a ZipLoopEnd node and connect the output of the FeatureFinderMetabo to

the first port of the ZipLoopEnd node.

To facilitate the collection of features corresponding to the same compound ion

across different samples, an alignment of the samples’ feature maps along retention

time is often helpful. In addition to local, small-scale elution differences, one can

often see constant retention time shifts across large sections between samples. We

can use linear transformations to correct for these large scale retention differences.

This brings themajority of corresponding compound ions close to each other. Finding

the correct corresponding ions is then faster and easier, as we don’t have to search

as far around individual features.

• After the ZipLoopEndnodeadda MapAlignerPoseClusteringnode ( Community Nodes
OpenMS Map Alignment ), set its Output Type to featureXML, and adjust the fol-

lowing settings

parameter value

algorithm→max_num_peaks_considered −1

algorithm→ superimposer→mz_pair_max_distance 0.005

algorithm→ superimposer→ num_used_points 10000

algorithm→ pairfinder→ distance_RT→max_difference 20.0

algorithm→ pairfinder→ distance_MZ→max_difference 20.0

algorithm→ pairfinder→ distance_MZ→ unit ppm

The next step after retention time correction is the grouping of corresponding

features in multiple samples. In contrast to the previous alignment, we assume no

linear relations of features across samples. The usedmethod is tolerant against local

swaps in elution order.

• After the MapAlignerPoseClustering add a FeatureLinkerUnlabeledQT

( Community Nodes OpenMS Map Alignment ) and adjust the following settings

parameter value

algorithm→ distance_RT→max_difference 40.0

algorithm→ distance_MZ→max_difference 20.0

algorithm→ distance_MZ→ unit ppm

40



• After the FeatureLinkerUnlabeledQT add a TextExporter node ( Community Nodes
OpenMS File Handling ).

• Add an Output Folder node and configure it with an output directorywhere you

want to store the resulting files.

• Run the pipeline and inspect the output.

You should find a single, tab-separated file containing the information on where

metabolites were found and with which intensities. You can also add Output Folder

nodes at different stages of the workflow and inspect the intermediate results (e.g.,

identified metabolite features for each input map). The complete workflow can be

seen in Figure 15. In the following section we will try to identify those metabolites.

Mass0trace0extractionLoad0mzML0input
files

Retention0time0correction0and0linking

Node06Node012 Node013 Node029Node097 Node098Node0106 Node0107

FeatureLinkerUnlabeledQTZipLoopStart ZipLoopEnd MapAlignerPoseClusteringInput0Files TextExporterFeatureFinderMetabo Output0Folder

Mass0trace0extractionLoad0mzML0input
files

Retention0time0correction0and0linking

Node06Node012 Node013 Node029Node097 Node098Node0106 Node0107

FeatureLinkerUnlabeledQTZipLoopStart ZipLoopEnd MapAlignerPoseClusteringInput0Files TextExporterFeatureFinderMetabo Output0Folder

Figure 15: Label-free quantification workflow for metabolites

5.3 Identifying metabolites in LC-MS/MS samples

At the current state we found several metabolites in the individual maps but so far

don’t know what they are. To identify metabolites OpenMS provides multiple tools,

including search by mass: the AccurateMassSearch node searches observed masses

against the HumanMetabolomeDatabase (HMDB)[9, 10, 11]. We start with thework-

flow from the previous section (see Figure 15).

• Add a FileConverter node ( Community Nodes OpenMS File Handling ) and connect

the output of the FeatureLinkerUnlabeledQT to the incoming port.

• Open the Configure dialog of the FileConverter and select the tab ”Output-

Types”. In the drop down list for FileConverter.1.out select ”featureXML”.

• Add an AccurateMassSearch node ( Community Nodes OpenMS Utilities ) and con-

nect theoutputof the FileConverter to thefirst port of the AccurateMassSearch.

• Add four Input File nodes and configure them with the following files

– Example_Data Metabolomics databases PositiveAdducts.tsv

This file specifies the list of adducts that are considered in the positive

mode. Each line contains the formula and charge of an adduct separated

by a semicolon (e.g. M+H;1+). The mass of the adduct is calculated auto-

matically.

41



– Example_Data Metabolomics databases NegativeAdducts.tsv

This file specifies the list of adducts that are considered in the negative

mode analogous to the positive mode.

– Example_Data Metabolomics databases HMDBMappingFile.tsv

This file contains information from ametabolite database in this case from

HMDB. It has three (or more) tab-separated columns: mass, formula, and

identifier(s). This allows for an efficient search by mass.

– Example_Data Metabolomics databases HMDB2StructMapping.tsv

This file contains additional information about the identifiers in the map-

ping file. It has four tab-separated columns that contain the identifier,

name, SMILES, and INCHI. Thesewill be included in the result file. The iden-

tifiers in this file must match the identifiers in the HMDBMappingFile.tsv.

• In the same order as they are given above connect them to the remaining input

ports of the AccurateMassSearch node.

• Add an Output Folder node and connect the first output port of the

AccurateMassSearch node to the Output Folder.

The result of the AccurateMassSearch node is in the mzTab format [12] so you can

easily open it in a text editor or import it into Excel or KNIME, which we will do in the

next section. The complete workflow from this section is shown in Figure 16.

Mass9trace9extractionLoad9mzML9input
files

Retention9time9correction9and9linking

Structure9mapping99files

Identification9using9accurate9mass
search9

Node96Node9EC Node9EO Node9C9Node997 Node998

Node999

Node9EZ5

Node9EZ6 Node9EZ7

Negative
Adducts

Positive9
Adducts

HMDB9C9Struct9
Mapping

HMDB9Mapping9
File

FeatureLinkerUnlabeledQTZipLoopStart ZipLoopEnd MapAlignerPoseClusteringInput9Files TextExporter

FileConverter

AccurateMassSearch

FeatureFinderMetabo Output9Folder

Input9File

Input9File

Input9File

Input9File

Mass9trace9extractionLoad9mzML9input
files

Retention9time9correction9and9linking

Structure9mapping99files

Identification9using9accurate9mass
search9

Node96Node9EC Node9EO Node9C9Node997 Node998

Node999

Node9EZ5

Node9EZ6 Node9EZ7

Negative
Adducts

Positive9
Adducts

HMDB9C9Struct9
Mapping

HMDB9Mapping9
File

FeatureLinkerUnlabeledQTZipLoopStart ZipLoopEnd MapAlignerPoseClusteringInput9Files TextExporter

FileConverter

AccurateMassSearch

FeatureFinderMetabo Output9Folder

Input9File

Input9File

Input9File

Input9File

Figure 16: Label-free quantification and identification workflow for metabolites

42



5.4 Convert your data into a KNIME table

The result fromthe TextExporternodeaswell as the result fromthe AccurateMassSearch

node are fileswhile standard KNIME nodes display and process only KNIME tables. To

convert thesefiles intoKNIMEtablesweneed twodifferentnodes. For the AccurateMassSearch

resultsweuse the MzTabReadernode ( Community Nodes OpenMS Conversion mzTab ) and
its SmallMolecule Sectionport. For the result of the TextExporterweuse the ConsensusTextReader

( Community Nodes OpenMS Conversion ).
When executed, both nodes will import the OpenMS files and provide access to

the data as KNIME tables. You can now easily combine both tables using the Joiner

node (Manipulation Column Split & Combine ) and configure it to match the m/z and re-

tention time values of the respective tables. The full workflow is shown in Figure 17.

Figure 17: Label-free quantification and identificationworkflow formetabolites that loads the results
into KNIME and joins the tables.

5.4.1 Bonus task: Visualizing data

Now that you have your data in KNIME you should try to get a feeling for the capabil-

ities of KNIME.

Check out the Molecule Type Cast node ( Chemistry Translators ) together
with subsequent cheminformatics nodes (e.g. RDKit From Molecule ( Community Nodes
RDKit Converters )) to render the structural formula contained in the re-

sult table.

Task

43



Have a look at the Column Filter node to reduce the table to the inter-

esting columns, e.g., only the Ids, chemical formula, and intensities.

Task

Try to compute and visualize the m/z and retention time error of the

different elements of the consensus features.

Task

5.5 Downstream data analysis and reporting

In this part of the metabolomics session we take a look at more advanced down-

stream analysis and the use of the statistical programming language R. As laid out

in the introduction we try to detect a set of spike-in compounds against a complex

blood background. As there are many ways to perform this type of analysis we pro-

vide a complete workflow.

Import the workflow from Workflows metabolite_ID.knwf in KNIME:
File Import KNIME Workflow...

Task

The section below will guide you in your understanding of the different parts of

the workflow. Once you understood the workflow you should play around and be

creative. Maybe create a novel visualization in KNIME or R? Do some more elaborate

statistical analysis? Note that somebasic R knowledge is required to fully understand

the processing in R Snippet nodes.

5.5.1 Signal processing and data preparation for identification

This part is analogous to what you did for the simple metabolomics pipeline.

5.5.2 Data preparation for quantification

The first part is identical to what you did for the simple metabolomics pipeline. Addi-

tionally, we convert zero intensities into NA values and remove all rows that contain

at least one NA value from the analysis. We do this using a very simple R Snippet and

subsequent Missing Value filter node.

44



Inspect the R Snippet by double-clicking on it. The KNIME table that

is passed to an R Snippet node is available in R as a data.frame named

knime.in. The result of this nodewill be read fromthedata.frameknime.out

after the script finishes. Try to understand and evaluate parts of the

script (Eval Selection). In this dialog you can also print intermediary re-

sults using for example the R command head(knime.in) or cat(knime.in)

to the Console pane.

Task

5.5.3 Statistical analysis

After we linked features across all maps, we want to identify features that are sig-

nificantly deregulated between the two conditions. We will first scale and normalize

the data, then perform a t-test, and finally correct the obtained p-values for multiple

testing using Benjamini-Hochberg. All of these steps will be carried out in individual

R Snippet nodes.

• Double-click on the first R Snippet node labeled ”log scaling” to open the R

Snippet dialog. In the middle you will see a short R script that performs the

log scaling. To perform the log scaling we use a so-called regular expression

(grepl) to select all columns containing the intensities in the six maps and take

the log2 logarithm.

• The output of the log scaling node is also used to draw a boxplot that can be

used to examine the structure of the data. Since we only want to plot the in-

tensities in the different maps (and not m/z or rt) we first use a Column Filter

node to keep only the columns that contain the intensities. We connect the re-

sulting table to a Box Plot node which draws one box for every column in the

input table. Right-click and select View: Box Plot .

• The median normalization is performed in a similar way to the log scaling. First

we calculate the median intensity for each intensity column, then we subtract

the median from every intensity.

• Open the Box Plot connected to the normalization node and compare it to the

box plot connected to the log scaling node to examine the effect of themedian

normalization.

• To perform the t-test we defined the two groups wewant to compare. Thenwe

call the t-test for every consensus feature unless it has missing values. Finally

45



we save the p-values and fold-changes in two new columns named p-value and

FC.

• The Numeric Row Splitter is used to filter less interesting parts of the data. In

this case we only keep columns where the fold-change is≥ 2.

• We adjust the p-values for multiple testing using Benjamini-Hochberg and keep

all consensus featureswith a q-value≤ 0.01 (i.e. we target a false-discovery rate

of 1%).

5.5.4 Interactive visualization

KNIME supportsmultiple nodes for interactive visualizationwith interrelated output.

The nodes used in this part of the workflow exemplify this concept. They further

demonstrate how figures with data dependent customization can be easily realized

using basic KNIME nodes. Several simple operations are concatenated in order to

enable an interactive volcano plot.

• We first log-transform fold changes and p-values in the R Snippet node. We

then append columns noting interesting features (concerning fold change and

p-value).

• With this information, we can use various Manager nodes ( Views Property ) to
emphasize interesting data points. The configuration dialogs allow us to select

columns to change color, shape or size of data points dependent on the column

values.

• The Scatter Plot node ( Views ) enables interactive visualization of the logarith-
mized values as a volcano plot: the log-transformed values can be chosen in

the ‘Column Selection’ tab of the plot view. Data points can be selected in the

plot and HiLited via themenu option. HiLiteing transfers to all other interactive

nodes connected to the samedata table. In our case, selection andHiLiteingwill

also occur in the Interactive Table node ( Views ).

• Output of the interactive table can then be filtered via the HiLitemenu tab. For

example, we could restrict shown rows to points HiLited in the volcano plot.

Inspect the nodes of this section. Customize your visualization and pos-

sibly try to visualize other aspects of your data.

Task

46



5.5.5 Advanced visualization

R Dependencies: This section requires that the R packages ggplot2 and ggbiplot are

both installed. ggplot2 is part of the KNIME R Statistics Integration (Windows Bina-

ries) which should already be installed via the full KNIME installer, ggbiplot however

is not. In case that you use an R installation where one or both of them are not yet

installed, add an R Snippet node and double-click to configure. In the R Script text

editor, enter the following code:

#Include the next line if you also have to install ggplot2:
install.packages("ggplot2")
#Include the following lines to install ggfortify:
install.packages("ggfortify")
library(ggplot2)
library(ggfortify)

Press Eval script to execute the script.

Even though the basic capabilities for (interactive) plots in KNIME are valuable for

initial data exploration, professional looking depiction of analysis results often relies

on dedicated plotting libraries. The statistics language R supports the addition of a

large variety of packages, including packages providing extensive plotting capabili-

ties. This part of the workflow shows how to use R nodes in KNIME to visualize more

advanced figures. Specifically, we make use of different plotting packages to realize

heatmaps.

• The used RView (Table) nodes combine the possibility to write R snippet code

with visualization capabilities inside KNIME. Resulting images can be looked at

in the output RView, or saved via the Image Port Writer node.

• The heatmap nodesmake use of the gplots libary, which is by default part of the

RWindows binaries (for full KNIME version 3.1.1 or higher). We again use regu-

lar expressions to extract all measured intensity columns for plotting. For clar-

ity, feature names are only shown in the heatmapafter filteringby fold changes.

5.5.6 Data preparation for Reporting

Following the identification, quantification and statistical analysis our data ismerged

and formatted for reporting. First we want to discard our normalized and logarith-

mized intensity values in favor of the original ones. To this end we first remove the

intensity columns (Column Filter) and add theoriginal intensities back (Joiner). Note

that we use an Inner Join 1. Combining ID and Quantification table into a single table

1Inner Join is a technical term that describes how database tables are merged.

47



is again achieved using a Joiner node.

Figure 18: Data preparation for reporting

Whathappens ifweuse a LeftOuter Join, RightOuter Join or FullOuter

Join instead of the Inner Join?

Question

Inspect the output of the join operation after the Molecule Type Cast

and RDKit molecular structure generation.

Task

While all relevant information is nowcontained inour table thepresentation could

be improved. Currently, we have several rows corresponding to a single consensus

feature (=linked feature) but with different, alternative identifications. It would be

more convenient to have only one row for each consensus feature with all accurate

mass identifications added as additional columns. To this end, we use the Column to

Grid node that flattens several rows with the same consensus number into a single

one. Note that we have to specify the maximum number of columns in the grid so

we set this to a large value (e.g. 100). We finally export the data to an Excel file (XLS

Writer).

5.6 Spectral library search

Identifying metabolites using only the accurate mass may lead to ambiguous results.

In practice, additional information (e.g. the retention time) is used to further narrow

down potential candidates. Apart from MS1-based features, tandem mass spectra

48



(MS2) of metabolites provide additional information. In this part of the tutorial, we

take a look on how metabolite spectra can be identified using a library of previously

identified spectra.

Because these libraries tend to be large we don’t distribute them with OpenMS.

Please copy the spectral library from

Example_Data Metabolomics databases MetaboliteSpectralDB.mzML

on the USB stick into the following directory of your KNIME installation

(version numbers and dates may differ slightly):

• Windows

C: Program Files KNIME3.3 plugins

de.openms.win32.x86_64_2.1.0.201611191105 payload share

OpenMS CHEMISTRY

• macOS

Applications KNIME 3.3.app Contents Eclipse plugins

de.openms.macosx.x86_64_2.1.0.201611191105 payload share

OpenMS CHEMISTRY

Nowconstruct theworkflowas shown inFig. 19. Use thefile Example_Data

Metabolomics datasets

Metabolite_ID_SpectraDB_positive.mzML as input for your workflow.

It contains tandemspectra that are identifiedby the MetaboliteSpectralMatcher.

The resulting mzTab file is read back into a KNIME table and stored in

an Excel table. Make sure that you connect the MzTabReader port cor-

responding to the Small Molecule Section to the Excel writer (XLS)).

Task

Figure 19: Spectral library identification workflow

Run the workflow and inspect the output.

5.6.1 Manual validation

In metabolomics, matches between tandem spectra and spectral libraries are manu-

ally validated. Several commercial and free online resources exist which help in that

task. Some examples are:

49



• mzCloud contains only spectra from Thermo Orbitrap instruments. The web-

page requires Microsoft Silverlight which currently does not work in modern

browsers (see https://www.mzcloud.org/DataViewer).

• MassBank North America (MoNA) has spectra from different instruments but

falls short in in number of spectra (compared to Metlin and mzCloud) http://

mona.fiehnlab.ucdavis.edu/spectra/display/KNA00122

• METLIN includes 961,829 molecules ranging from lipids, steroids, metabolites,

small peptides, carbohydrates, exogenous drugs and toxicants. In total over

14,000 metabolites.

Here, we will use METLIN to manually validate metabolites.

Open themzMLfile in TOPPView and inspect some of your top hits. Se-

lect the tandem spectrum of Glutathione, but do not close TOPPView,

yet.

Task

Figure 20: Tandem spectrum of glutathione. Visualized in TOPPView.

On the METLIN homepage search for Compound Name Glutathione using
the Advanced Search (https://metlin.scripps.edu/landing_page.php?pgcontent=
advanced_search). Note that free registration is required. Which colli-

sion energy (and polarity) gives the best (visual) match to your experi-

mental spectrum in TOPPView?

Task

50

https://www.mzcloud.org/DataViewer
http://mona.fiehnlab.ucdavis.edu/spectra/display/KNA00122
http://mona.fiehnlab.ucdavis.edu/spectra/display/KNA00122
https://metlin.scripps.edu/landing_page.php?pgcontent=advanced_search
https://metlin.scripps.edu/landing_page.php?pgcontent=advanced_search


Figure 21: Tandem spectrum of glutathione. Visualized inMetlin. Note that several fragment spectra
from varying collision energies are available.

51



6 OpenSWATH

6.1 Introduction

OpenSWATH [13] is a module of OpenMS that allows analysis of LC-MS/MS DIA (data

independent acquisition) data using the approach described by Gillet et al. [14]. The

DIA approach described there uses 32 cycles to iterate through precursor ion win-

dows from 400-426 Da to 1175-1201 Da and at each step acquires a complete, mul-

tiplexed fragment ion spectrum of all precursors present in that window. After 32

fragmentations (or 3.2 seconds), the cycle is restarted and the first window (400-426

Da) is fragmented again, thus delivering complete “snapshots” of all fragments of a

specific window every 3.2 seconds.

The analysis approach described by Gillet et al. extracts ion traces of specific frag-

ment ions from all MS2 spectra that have the same precursor isolation window, thus

generating data that is very similar to SRM traces.

6.2 Installation of OpenSWATH

OpenSWATH has been fully integrated since OpenMS 1.10 [4, 2, 15]).

6.3 Installation of mProphet

mProphet (http://www.mprophet.org/) [16] is available as standalone script in External_Tools

mProphet. R (http://www.r-project.org/) and thepackageMASS (http://cran.r-project.

org/web/packages/MASS/) are further required to execute mProphet. Please obtain a

version for either Windows, Mac or Linux directly from CRAN.

pyprophet, a much faster reimplementation of the mProphet algorithm is avail-

able fromPyPI (https://pypi.python.org/pypi/pyprophet/). Theusageof pyprophet

instead of mProphet is suggested for large-scale applications, but the installation re-

quiresmoredependencies and therefore, for this tutorial theapplicationofmProphet

is described.

6.4 Generating the Assay Library

6.4.1 Generating TraML from transition lists

OpenSWATH requires the assay libraries to be supplied in the TraML format [17]. To

enablemanual editingof transition lists, theTOPP tool ConvertTSVToTraML is available

that uses tab separated files as input. Example datasets are provided in OpenSWATH

assay. Please note that the transition lists need to be named .csv or .tsv.

52

http://www.mprophet.org/
http://www.r-project.org/
http://cran.r-project.org/web/packages/MASS/
http://cran.r-project.org/web/packages/MASS/
https://pypi.python.org/pypi/pyprophet/


The header of the transition list contains the following variables (with example

values in brackets):

PrecursorMz

The mass-to-charge (m/z) of the precursor ion. (728.88)

ProductMz

The mass-to-charge (m/z) of the product or fragment ion. (924.539)

Tr_recalibrated

The normalized retention time (or iRT) [18] of the peptide. (26.5)

transition_name

A unique identifier for the transition.

(AQUA4SWATH_HMLangeA_ADSTGTLVITDPTR(UniMod:267)/2_y8)

CE

The collision energy that should be used for the acquisition. (27)

Optional (not used by OpenSWATH)

LibraryIntensity

The relative intensity of the transition. (3305.3)

transition_group_id

A unique identifier for the transition group.

(AQUA4SWATH_HMLangeA_ADSTGTLVITDPTR(UniMod:267)/2)

decoy

A binary value whether the transition is target or decoy (target:0, decoy:1). (0)

PeptideSequence

The unmodified peptide sequence. (ADSTGTLVITDPTR)

ProteinName

A unique identifier for the protein. (AQUA4SWATH_HMLangeA)

Annotation

The fragment ion annotation. (y8)

Optional (not used by OpenSWATH)

FullUniModPeptideName

Thepeptide sequencewithUniModmodifications. (ADSTGTLVITDPTR(UniMod:267))

MissedCleavages

The number of missed cleavages during enzymatic digestion. (0)

Optional (not used by OpenSWATH)

53



Replicates

The number of replicates. (0)

Optional (not used by OpenSWATH)

NrModifications

The number of modifications. (0)

Optional (not used by OpenSWATH)

PrecursorCharge

The precursor ion charge. (2)

GroupLabel

The stable isotope label. (light)

Optional (not used by OpenSWATH)

UniprotID

The Uniprot ID of the protein. ()

Optional (not used by OpenSWATH)

To convert transitions lists to TraML, use ConvertTSVToTraML:

Linux or Mac

On the Terminal:

ConvertTSVToTraML −in OpenSWATH_SGS_AssayLibrary.csv −out OpenSWATH_SGS_AssayLibrary←↩
.TraML

Windows

On the TOPP command line:

ConvertTSVToTraML.exe −in OpenSWATH_SGS_AssayLibrary.csv −out ←↩
OpenSWATH_SGS_AssayLibrary.TraML

6.4.2 Appending decoys to a TraML

In addition to the target assays, OpenSWATH further requires decoy assays in the li-

brary which are later used for classification and error rate estimation. For the decoy

generation it is crucial that the decoys represent the targets in a realistic but unnat-

ural manner without interfering with the targets. The methods for decoy generation

implemented in OpenSWATH include ’shuffle’, ’pseudo-reverse’, ’reverse’ and ’shift’.

To append decoys to a TraML, the TOPP tool OpenSwathDecoyGenerator can be used:

54



Linux or Mac

On the Terminal:

OpenSwathDecoyGenerator −in OpenSWATH_SGS_AssayLibrary.TraML −out ←↩
OpenSWATH_SGS_AssayLibrary_with_Decoys.TraML −method shuffle −append −←↩
exclude_similar −remove_unannotated

Windows

On the TOPP command line:

OpenSwathDecoyGenerator.exe −in OpenSWATH_SGS_AssayLibrary.TraML −out ←↩
OpenSWATH_SGS_AssayLibrary_with_Decoys.TraML −method shuffle −append −←↩
exclude_similar −remove_unannotated

The flag -append generates an output TraML with the complete set of decoy and

target assays. The flag -exclude_similar is used to exclude decoys which are very

similar to the target assays.

6.5 OpenSWATH KNIME

An example KNIME workflow for OpenSWATH is supplied in Workflows (Fig. 22).

The example dataset can be used for this workflow (filenames in brackets):

1. Open Workflows OpenSWATH OpenSWATH.zip inKNIME: File Import KNIME Workflow... .

2. Select thenormalized retention time (iRT) assay library inTraML formatbydouble-

clicking on node Input File iRT Assay Library .
( OpenSWATH assay OpenSWATH_iRT_AssayLibrary.TraML)

3. Select the SWATHMS data in mzML format as input by double-clicking on node
Input File SWATH-MS files .
( OpenSWATH data split_napedro_L120420_010_SW-*.nf.pp.mzML)

4. Select the targetpeptideassay library inTraML format as inputbydouble-clicking

on node Input Files Assay Library .
( OpenSWATH assay OpenSWATH_SGS_AssayLibrary.TraML)

5. Set the output destination by double-clicking on node Output File .

6. Run the workflow.

55



The resulting output can be found at your selected path, which will be used as

input for mProphet. Execute the script on the Terminal (Linux or Mac) or cmd.exe

(Windows) in OpenSWATH result:

R −−slave −−args bin_dir=../../../External_Tools/mProphet/ mquest=OpenSWATH_output.csv ←↩
workflow=LABEL_FREE num_xval=5 run_log=FALSE write_classifier=1 write_all_pg=1 < ←↩
../../../External_Tools/mProphet/mProphet.R

The main output will be called

OpenSWATH result mProphet_all_peakgroups.xls

with statistical information available in

OpenSWATH result mProphet.pdf.

Pleasenote thatdue to the semi-supervisedmachine learningapproachofmProphet

the results differ slightly when mProphet is executed several times.

Nodew1

Nodew2 Nodew3

Nodew4

Nodew5

SWATHVMSwfiles

AssaywLibrary

iRTwAssaywLibrary

Nodew9

OpenSwathChromatogramExtractor

OpenSwathRTNormalizer OpenSwathChromatogramExtractor

OpenSwathAnalyzer

OpenSwathFeatureXMLToTSV

InputwFiles

InputwFile

InputwFile

OutputwFile

Nodew1

Nodew2 Nodew3

Nodew4

Nodew5

SWATHVMSwfiles

AssaywLibrary

iRTwAssaywLibrary

Nodew9

OpenSwathChromatogramExtractor

OpenSwathRTNormalizer OpenSwathChromatogramExtractor

OpenSwathAnalyzer

OpenSwathFeatureXMLToTSV

InputwFiles

InputwFile

InputwFile

OutputwFile

Figure 22: OpenSWATH KNIMEWorkflow.

6.6 From the example dataset to real-life applications

The sample dataset used in this tutorial is part of the larger SWATHMSGold Standard

(SGS) dataset which is described in the publication of Roest et al. [13]. It contains one

of 90 SWATH-MS runs with significant data reduction (peak picking of the raw, profile

data) tomake file transfer andworkingwith it easier. Usually SWATH-MS datasets are

hugewith several gigabyte per run. Especially when complex samples in combination

with large assay libraries are analyzed, the TOPP tool based workflow requires a lot

of computational resources. For this reason, an integrated tool (OpenSwathWorkflow)

has been developed, combining all the steps shown in the KNIME-Workflow into a

56



single executable. It is shipped with OpenMS 2.0.0. Instructions on how to use this

tool can be found on http://www.openswath.org.

57

http://www.openswath.org


7 An introduction to pyOpenMS

7.1 Introduction

pyOpenMS provides Python bindings for a large part of the OpenMS library for mass

spectrometrybasedproteomics. It thusprovides access toa feature-rich, open-source

algorithm library for mass-spectrometry based proteomics analysis. These Python

bindings allow rawaccess to thedata-structures andalgorithms implemented inOpenMS,

specifically those for file access (mzXML, mzML, TraML, mzIdentML among others),

basic signal processing (smoothing, filtering, de-isotoping andpeak-picking) and com-

plex data analysis (including label-free, SILAC, iTRAQ and SWATH analysis tools).

pyOpenMS is integrated into OpenMS starting from version 1.11. This tutorial is

addressed to people already familiar with Python. If you are new to Python, we sug-

gest to start with a Python tutorial (http://en.wikibooks.org/wiki/Non-Programmer%

27s_Tutorial_for_Python_2.6).

7.2 Installation

Onebasic requirement for the installationofpythonpackages, inparticular pyOpenMS,

is a package manager for python. There are two commonly used ones: easy_install

(https://pypi.python.org/pypi/setuptools) and thenewerpip (https://pypi.python.

org/pypi/pip). For Windows and Mac we already provide a package for pip (and sug-

gest to use it to get the newest version of pyOpenMS). For Linux you will have to use

easy_install.

7.2.1 Windows

1. Install Python 2.7 (http://www.python.org/download/)

2. Install NumPy (http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy)

3. Install pip (see above)

4. On the command line:

python −m pip install −U pip
python −m pip install −U wheel
python −m pip install pyopenms

58

http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_2.6
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_2.6
https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip
http://www.python.org/download/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy


7.2.2 Mac OS X 10.10

Using the preinstalled python of the system

1. Install pip (easy_install should be included on Mac)

sudo easy_install pip

If you encounter problems, install pip as described on their homepage (https:

//pypi.python.org/pypi/pip) using their script.

2. On the Terminal:

pip install −U pip
pip install −U wheel
pip install pyopenms

7.2.3 Linux

Use your package manager apt-get or yum, where possible.

1. Install Python 2.6 or 2.7 (Debian: python-dev, RedHat: python-devel)

2. Install NumPy (Debian / RedHat: python-numpy)

3. Install setuptools (Debian / RedHat: python-setuptools)

4. On the Terminal:

easy_install pyopenms

7.3 Build instructions

InstructionsonhowtobuildpyOpenMScanbe foundonline (http://ftp.mi.fu-berlin.

de/OpenMS/release-documentation/html/pyOpenMS.html).

7.4 Your first pyOpenMS tool: pyOpenSwathFeatureXMLToTSV

The first tool that you are going to re-implement is a TOPP tool called OpenSwath-

FeatureXMLToTSV. Take a look at the help of the tool:

59

https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip
http://ftp.mi.fu-berlin.de/OpenMS/release-documentation/html/pyOpenMS.html
http://ftp.mi.fu-berlin.de/OpenMS/release-documentation/html/pyOpenMS.html


OpenSwathFeatureXMLToTSV −−help

OpenSwathFeatureXMLToTSV −− Converts a featureXML to a mProphet tsv.
Version: 2.0.0 Apr 11 2015, 02:02:58, Revision: 66a7739

Usage:
OpenSwathFeatureXMLToTSV <options>

Options (mandatory options marked with '∗'):
−in <files>∗ Input files separated by blank (valid formats: '←↩

featureXML')
−tr <file>∗ TraML transition file (valid formats: 'traML')
−out <file>∗ Tsv output file (mProphet compatible) (valid formats: '←↩

csv')
−short_format Whether to write short (one peptide per line) or long ←↩

format (one transition per line).
−best_scoring_peptide <varname> If only the best scoring feature per peptide should be ←↩

printed, give the variable name

Common TOPP options:
−ini <file> Use the given TOPP INI file
−threads <n> Sets the number of threads allowed to be used by the TOPP←↩

tool (default: '1')
−write_ini <file> Writes the default configuration file
−−help Shows options
−−helphelp Shows all options (including advanced)

OpenSwathFeatureXMLToTSVconverts a featureXMLfile toa tab-separatedvalue

text file. This example will teach you how to use pyOpenMS in combination with

Python to implement such a tool very quickly.

7.4.1 Basics

The first task that your tool needs to be able to do is to read the parameters from

the command line and provide a main routine. This is all standard Python and no

pyOpenMS is needed so far:

#!/usr/bin/env python
import sys

def main(options):

# test parameter handling
print options.infile, options.traml_in, options.outfile

def handle_args():
import argparse

usage = ""
usage += "\nOpenSwathFeatureXMLToTSV −− Converts a featureXML to a mProphet tsv."

parser = argparse.ArgumentParser(description = usage )

60



parser.add_argument('−in', dest='infile', help = 'An input file containing features [←↩
featureXML]')

parser.add_argument('−tr', dest='traml_in', help='An input file containing the ←↩
transitions [TraML]')

parser.add_argument('−out', dest='outfile', help='Output mProphet TSV file [tsv]')

args = parser.parse_args(sys.argv[1:])
return args

if __name__ == '__main__':
options = handle_args()
main(options)

Execute this code in the example script

./pyOpenMS/OpenSwathFeatureXMLToTSV_basics.py

python OpenSwathFeatureXMLToTSV_basics.py −−help
usage: OpenSwathFeatureXMLToTSV_basics.py [−h] [−in INFILE] [−tr TRAML_IN]

[−out OUTFILE]

OpenSwathFeatureXMLToTSV −− Converts a featureXML to a mProphet tsv.

optional arguments:
−h, −−help show this help message and exit
−in INFILE An input file containing features [featureXML]
−tr TRAML_IN An input file containing the transitions [TraML]
−out OUTFILE Output mProphet TSV file [tsv]

python OpenSwathFeatureXMLToTSV_basics.py −in data/example.featureXML −tr assay/←↩
OpenSWATH_SGS_AssayLibrary.TraML −out example.tsv

data/example.featureXML assay/OpenSWATH_SGS_AssayLibrary.TraML example.tsv

Theparameters arebeing read fromthe command lineby the functionhandle_args()

and given to the main() function of the script, which prints the different variables.

7.4.2 Loading data structures with pyOpenMS

Nowwe’regoing to import thepyOpenMSmodulewith import pyopenms in theheader

of the script and load the featureXML:

#!/usr/bin/env python
import pyopenms
import sys

def main(options):
# load featureXML
features = pyopenms.FeatureMap()
fh = pyopenms.FileHandler()
fh.loadFeatures(options.infile, features)

61



keys = []
features[0].getKeys(keys)
print keys

def handle_args():
import argparse

usage = ""
usage += "\nOpenSwathFeatureXMLToTSV −− Converts a featureXML to a mProphet tsv."

parser = argparse.ArgumentParser(description = usage )
parser.add_argument('−in', dest='infile', help = 'An input file containing features [←↩

featureXML]')
parser.add_argument('−tr', dest='traml_in', help='An input file containing the ←↩

transitions [TraML]')
parser.add_argument('−out', dest='outfile', help='Output mProphet TSV file [tsv]')

args = parser.parse_args(sys.argv[1:])
return args

if __name__ == '__main__':
options = handle_args()
main(options)

The functionpyopenms.FeatureMap() initializes anOpenMSFeatureMapdata struc-

ture. The function pyopenms.FileHandler() prepares a filehandler with the variable

name fh and fh.loadFeatures(options.infile, features) takes the filename and imports

the featureXML into the FeatureMap data structure.

In the next step, we’re accessing the keys using the function getKeys() and print-

ing them to stdout:

python OpenSwathFeatureXMLToTSV_datastructures1.py −in data/example.featureXML −tr assay/←↩
OpenSWATH_SGS_AssayLibrary.TraML −out example.tsv

['PeptideRef', 'leftWidth', 'rightWidth', 'total_xic', 'peak_apices_sum', '←↩
var_xcorr_coelution', 'var_xcorr_coelution_weighted ', 'var_xcorr_shape', '←↩
var_xcorr_shape_weighted', 'var_library_corr', 'var_library_rmsd', '←↩
var_library_manhattan', 'var_library_dotprod', 'delta_rt', 'assay_rt', 'norm_RT', '←↩
rt_score', 'var_norm_rt_score', 'var_intensity_score', 'nr_peaks', 'sn_ratio', '←↩
var_log_sn_score', 'var_elution_model_fit_score', 'xx_lda_prelim_score', '←↩
var_isotope_correlation_score', 'var_isotope_overlap_score', 'var_massdev_score', '←↩
var_massdev_score_weighted', 'var_bseries_score', 'var_yseries_score', '←↩
var_dotprod_score', 'var_manhatt_score', 'main_var_xx_swath_prelim_score', 'PrecursorMZ'←↩
, 'xx_swath_prelim_score']

In the next task, please load the TraML into anOpenMS TargetedExperiment data

structure, analogously to the featureXML. You might want to consult the pyOpenMS

manual (http://proteomics.ethz.ch/pyOpenMS_Manual.pdf), whichprovides anoverview

of all functionality. If you have trouble reading the TraML, search for TraMLFile(). If

you can’t solve the task, takea lookatOpenSwathFeatureXMLToTSV_datastructures2.py

62

http://proteomics.ethz.ch/pyOpenMS_Manual.pdf


7.4.3 Converting data in the featureXML to a TSV

Now that all data structures are populated, we need to access the data using the

provided API and store it in something that is directly accessible from Python. We

prepared two functions for you: get_header() & convert_to_row():

def get_header(features):
keys = []
features[0].getKeys(keys)
header = [

"transition_group_id",
"run_id",
"filename",
"RT",
"id",
"Sequence" ,
"FullPeptideName",
"Charge",
"m/z",
"Intensity",
"ProteinName",
"decoy"]

header.extend(keys)
return header

get_header() takes as input a FeatureMap and uses the getKeys() function that

you have seen before to extend a predefined header list based on the contents of

the FeatureMap. The return variable is a native Python list.

def convert_to_row(first, targ, run_id, keys, filename):
peptide_ref = first.getMetaValue("PeptideRef")
pep = targ.getPeptideByRef(peptide_ref)
full_peptide_name = "NA"
if (pep.metaValueExists("full_peptide_name")):

full_peptide_name = pep.getMetaValue("full_peptide_name")

decoy = "0"
peptidetransitions = [t for t in targ.getTransitions() if t.getPeptideRef() == ←↩

peptide_ref]
if len(peptidetransitions) > 0:

if peptidetransitions[0].getDecoyTransitionType() == pyopenms.DecoyTransitionType().←↩
DECOY:
decoy = "1"

elif peptidetransitions[0].getDecoyTransitionType() == pyopenms.DecoyTransitionType←↩
().TARGET:
decoy = "0"

protein_name = "NA"
if len(pep.protein_refs) > 0:

protein_name = pep.protein_refs[0]

row = [
first.getMetaValue("PeptideRef"),
run_id,

63



filename,
first.getRT(),
first.getUniqueId(),
pep.sequence,
full_peptide_name,
pep.getChargeState(),
first.getMetaValue("PrecursorMZ"),
first.getIntensity(),
protein_name,
decoy

]

for k in keys:
row.append(first.getMetaValue(k))

return row

convert_to_row() is abitmore complicatedand takes asfirst input aFeatureOpenMS

class. From this, we access stored values using the provided functions (getRT(), getU-

niqueId(), etc). It further takes a TargetedExperiment to access information from the

TraML with the provided routines. This data is then stored in a standard Python list

with the variable name row and returned.

7.4.4 Putting things together

Now put these two functions into the header of

OpenSwathFeatureXMLToTSV_datastructures2.py.

Your final goal is to implement the conversion functionality into the main func-

tion using get_header() & convert_to_row() and towrite a TSV using the standard csv

module from Python http://docs.python.org/2/library/csv.html. Compare the re-

sults with ./result/example.tsv. Are the results identical? Congratulations to your

first pyOpenMS tool!

Hint: If you struggle at anypoint, takea lookatOpenSwathFeatureXMLToTSV_solution.py.

7.4.5 Bonus task

Implement all other 184 TOPP tools using pyOpenMS.
Task

64

http://docs.python.org/2/library/csv.html


8 Quality control

8.1 Introduction

In this chapter, we will build on an existing workflow with OpenMS / KNIME to add

some quality control (QC). We will utilize the qcML tools in OpenMS to create a file

with which we can collect different measures of quality to the mass spectrometry

runs themselves and the applied analysis. The file also serves the means of visually

reporting on the collected quality measures and later storage along the other anal-

ysis result files. We will, step-by-step, extend the label-free quantitation workflow

from section 3 with QC functions and thereby enrich each time the report given by

the qcML file. But first, to make sure you get the most of this tutorial section, a little

primer on how we handle QC on the technical level.

QC metrics and qcML

To assert the quality of a measurement or analysis we use quality metrics. Metrics

are describing a certain aspect of the measurement or analysis and can be anything

from a single value, over a range of values to an image plot or other summary. Thus,

qcML metric representation is divided into QC parameters (QP) and QC attachments

(QA) to be able to represent all sorts of metrics on a technical level.

AQPmay (ormay not) have a valuewhichwould equal ametric describablewith a sin-

gle value. If the metric is more complex and needs more than just a single value, the

QP does not require the single value but rather depends on an attachment of values

(QA) for full meaning. Such a QA holds the plot or the range of values in a table-like

form. Like this, we can describe any metric by a QP and an optional QA.

To assure a consensual meaning of the quality parameters and attachments, we cre-

ated a controlled vocabulary (CV). Each entry in the CV describes a metric or part/ex-

tension thereof. We embed each parameter or attachment with one of these and by

doing so, connect a meaning to the QP/QA. Like this, we later know exactly what we

collected and the programs can find and connect the right dots for rendering the re-

port or calculating new metrics automatically. You can find the constantly growing

controlled vocabulary here:
https://github.com/qcML/qcML-development/blob/master/cv/qc-cv.obo .
Finally, in a qcml file, we split the metrics on a per mass-spectrometry-run base or a

set ofmass-spectrometry-runs respectively. Each run or setwill contain its QP/QAwe

calculate for it, describing their quality.

65



8.2 Building a qcML file per run

As a start, we will build a basic qcML file for each mzML file in the label-free analysis.

Weare already creating the twonecessary analysis files tobuild abasic qcMLfileupon

eachmzMLfile, a featurefile and an identificationfile. Weuse the QCCalculatornode

from Community Nodes OpenMS Utilities where also all other QC* nodes will be found.

The QCCalculatorwill create a very basic qcML file in which it will store collected and

calculated quality data.

• Copy your label-fee quantitationworkflow into a new lfq-qcworkflow and open

it.

• Place the QCCalculator node after the IDMapper node. Being inside the ZipLoop,

it will execute for each of the three mzML files the Input node.

• Connect the first QCCalculator port to the first ZipLoopStart outlet port, which

will carry the individual mzML files.

• Connect the last’s ID outlet port (IDFilter or the ID metanode) to the second

QCCalculator port for the identification file.

• Finally, connect the IDMapper outlet to the third QCCalculator port for the fea-

ture file.

The created qcML files will not have much to show for, basic as they are. So we

will extend them with some basic plots.

• First, we will add an 2D overview image of the given mass spectrometry run as

youmayknow it from TOPPView. Add the ImageCreatornode from Community Nodes
OpenMS Utilities . Change the width and heigth parameters to 640x640 as we

don’t want it to be too big. Connect it to the first ZipLoopStart outlet port, so

it will create an image file of the mzML’s contained run.

• Nowwehave toembed this file into theqcMLfile, and attach it to the rightQual-

ityParameter. For this, place a QCEmbedder node behind the ImageCreator and

connect that to its third inlet port. Connect its first inlet port to theoutlet of the

QCCalculator node to pass on the qcML file. Now change the parameter cv_acc

toQC:0000055which designates the attached image tobeof type QC:0000055 -

MS experiment heatmap. Finally, change theparameterqp_att_acc toQC:0000004,

to attach the image to theQualityParameter QC:0000004 - MS acquisition result

details.

• For a reference of which CVs are already defined for qcML, have a look at
https://github.com/qcML/qcML-development/blob/master/cv/qc-cv.obo .

66



There are two other basic plots which we almost always might want to look at be-

fore judging the quality of a mass spectrometry run and its identifications: the total

ion current (TIC) and the PSMmass error (Mass accuracy), which we have available as

pre-packaged QC metanodes.

Import theworkflowfrom Workflows Quality Control QC Metanodes.zip

in KNIME: File Import KNIME Workflow...

Task

• Copy the Mass accuracy metanode into the workflow behind the QCEmbedder

node and connect it. The qcML will be passed on and the Mass accuracy plots

added. The information needed was already collected by the QCCalculator.

• Do the same with the TIC metanode so that your qcML file will get passed on

and enriched on each step.

R Dependencies: This section requires that the R packages ggplot2 and scales are

both installed. This is the same procedure as in section 5.5.5. In case that you use

an R installation where one or both of them are not yet installed, open the R Snippet

nodes inside themetanodes you just used (double-click). Edit the script in theR Script

text editor from:

#install.packages("ggplot2")
#install.packages("scales")

to

install.packages("ggplot2")
install.packages("scales")

Press Eval script to execute the script.

Note:Tohaveapeek intowhatourqcMLnow looks like foroneof the ZipLoop

iterations,wecanaddan Output Foldernode from Community Nodes GenericKnimeNodes
IO and set its destination parameter to somewhere we want to find our in-

termediate qcMLfiles in, for example tmp qc_lfq . If wenowconnect the last

metanodewith the Output Folder and restart the workflow, we can start in-

specting the qcML files.

67



Figure 23: Basic QC setup within a LFQ workflow

Find your first created qcML file and open it with the browser (not IE),

and the contained QC parameters will be rendered for you.

Task

8.3 Adding brand new QC metrics

We can also add brand new QC metrics to our qcML files. Remember the Histogram

you added inside the ZipLoop during the label-free quantitation section? Let’s imag-

ine for a moment this was a brand new and utterly important metric and plot for the

assessment of your analyses quality. There is an easy way to integrate such newmet-

rics into your qcMLs. Though the Histogram node cannot pass its plot to an image, we

can do so with a R View (table).

• Add an R View (table) next to the IDTextReader node and connect them.

• Edit the R View (table) by adding the R Script according to this:

#install.packages("ggplot2")
library("ggplot2")
ggplot(knime.in, aes(x=peptide_charge)) +
geom_histogram(binwidth=1, origin =−0.5) +
scale_x_discrete() +
ggtitle("Identified peptides charge histogram") +
ylab("Count")

• This will create a plot like the Histogram node on peptide_charge and pass it on

as an image.

68



• Nowaddandconnect a Image2FilePortnode from Community Nodes GenericKnimeNodes
Flow to the R View (table).

• We can now use a QCEmbedder node like before to add our new metric plot into

the qcML.

• After looking for an appropriate target in
https://github.com/qcML/qcML-development/blob/master/cv/qc-cv.obo , we found thatwecan
attach our plot to the MS identification result details by setting the parameter

qp_att_acc toQC:0000025, as we are plotting the charge histogramof our iden-

tified peptides.

• To have the plot later displayed properly, we assign it the parameter cv_acc of

QC:0000051, a generic plot. Also we made sure in the R Script, that our plot

carries a caption so that we know which is which, if we had more than one new

plot.

• Nowwe redirect the QCEmbedders output to the Output Folder from before and

can have a look at how our qcML is coming along after restarting the workflow.

Figure 24: QC with new metric

69



8.4 Set QC metrics

Besidesmonitoring the quality of each individual mass spectrometry run analysis, an-

other capability of QC with OpenMS and qcML is to monitor the complete set. The

easiest control is to compare mass spectrometry runs which should be similar, e.g.

technical replicates, to spot any aberrations in the set.

For this, we will first collect all created qcML files, merge them together and use the

qcML onboard set QC properties to detect any outliers.

• connect the QCEmbedders output from last section to the ZipLoopEnds second

input port.

• The corresponding output port will collect all qcML files from each ZipLoop it-

eration and pass them on as a list of files.

• Now we add a QCMerger node after the ZipLoopEnd and feed it that list of qcML

files. In addition, we set its parameter setname to give our newly created set a

name - say spikein_replicates.

• To inspect all the QCs next to each other in that created qcML file, we have to

add a new Output Folder to which we can connect the QCMerger output.

When inspecting the set-qcML file in a browser, we will be presented another

overview. After the set content listing, the basic QC parameters (like number of iden-

tifications) are eachdisplayed in a graph. Each setmember (or run) has its own section

on the x-axis and each run is connectedwith that graph via a link in themouseover on

one of the QC parameter values.

70



Figure 25: QC set creation from ZipLoop

For ideas on new QC metrics and parameters -as you add them in your

qcML files as generic parameters, feel free to contact us, so we can in-

clude them in the CV.

Task

71



9 Troubleshooting guide

This section will show you where you can turn to when you encounter any problems

with this tutorial or with our nodes in general. Please see the FAQ first. If your prob-

lem is not listed or the proposed solution does not work, feel free to leave us a mes-

sage at the means of support that you see most fit. If that is the case, please provide

us with as much information as you can. In an ideal case, that would be:

• Your operating system and its version (e.g. Windows 8, Ubuntu 14.04)

• Your KNIME version (e.g. KNIME 3.1.2 full, KNIME 3.1.1 core)

• If not full: Which update site did you use for theOpenMSplugin? Trunk (nightly-

builds) or Stable?

• Your OpenMS plugin version found under
Help Install New Software What is already installed?

• Other installations of OpenMS on your computer (e.g. from the independent

OpenMS installer, another KNIME instance etc.)

• The log of the error in KNIME and the standard output of the tool (see FAQ:How

to debug)

• Your description of what you tried to do and experienced instead

9.1 FAQ

9.1.1 How to debug KNIME and/or the OpenMS nodes?

• KNIME: Start with the normal log on the bottom right of KNIME. In general all

warnings and errors will be listed there. If the output is not helpful enough,

try to set the logging verbosity to the highest (DEBUG) under Preferences ->

KNIME -> Log file log level.

• OpenMS nodes: The first step should also be the log of KNIME. You can view

the output and the errors of our tools by right-clicking on the node and select-

ing
View: NODENAME Std Output/Error . This shows you the output of the OpenMS exe-

cutable thatwas called by that node. For advanced users, you can try to execute

the underlying executable in your
KNIME/plugins/de.openms.platform.arch.version/payload/bin folder, to see if the error is re-
producible outside of KNIME.

72



You can look up temporary files that are created by OpenMS nodes not con-

nected to an Output or Viewer Node by right- clicking on a node and selecting

the corresponding output view for the output you want to have a look at. The

output views are located on the bottom of the menu that shows up after right-

clicking. Their icon is amagnifying glass on topof a data table. The names of the

output views in that menu may vary from node to node (usually a combination

of ”file”,”out”,”output” and optionally its possible extensions). For example for

the Input File node you can open the information on the output files by click-

ing on ”loaded file”. In any case, a hierarchy of file descriptions will show up. If

there are multiple files on that port they will be numbered (usually beginning

from 0). Expand the information for the file you want to see and copy its URI

(you might need to erase the ”file:” prefix). Now open it with an editor of your

choice. Be aware that temporary files are subject to deletion and are usually

only stored as long as they are actually needed. There is also a Debugmode for

the GKN nodes that keeps temporary files that can be activated under Prefer-

ences -> KNIME -> Generic KNIME Nodes -> Debug mode. For the single nodes

you can also increase the debug level in the configuration dialog under the ad-

vanced parameters. You can also specify a log file there, to save the log output

of a specific node on your file system.

9.1.2 General

Q: Can I add my own modifications to the Unimod.xml?

A: Unfortunately not very easy. This is an open issue.

Q: I have problem XYZ but it also occurs with other nodes or generally in the KNIME

environment/GUI, what should I do?

A: This sounds like a general KNIME bug and we advise to search help directly at the

KNIME developers. They also provide a FAQ and a forum.

Q: After exporting and reading in results into a KNIME table (e.g. with a MzTabEx-

porter and MzTabReader combination) numeric values get rounded (e.g. from scien-

tific notation 4.5e-10 to zero) or are in a different representation than in the under-

lying exported file!

A: Please try a different table column renderer in KNIME. Open the table in question,

right-click on the header of an affected columnand select anotherAvailable Renderer

by hovering and finally left-clicking.

73

https://tech.knime.org/ faq
https://tech.knime.org/forum


Q: I have checked all the configurations but KNIME complains that it can not find cer-

tain output Files (FileStoreObjects).

A: Sometimes KNIME/GKN has hiccups with multiple nodes with a same name, exe-

cuted at the same time in the same loop. We have seen that a simple save and restart

of KNIME usually solves the problem.

9.1.3 Platform-specific problems

Linux

Q:Whenever I try to execute an OpenMS node I get an error similar to these:

/usr/lib/x86_64-linux-gnu/libgomp.so.1: version ‘GOMP_4.0’ not found

/usr/lib/x86_64-linux-gnu/libstdc++.so.6: version ‘GLIBCXX_3.4.20’ not found

A:We currently build the binaries shipped in the OpenMS KNIME plugin with gcc 4.8.

We will try to extend our support for older compilers. Until then you either need

to upgrade your gcc compiler or at least the library that the tool complained about

or you need to build the binaries yourself (see OpenMS documentation) and replace

them in your KNIME binary folder

( YOURKNIMEFOLDER/plugins/de.openms.platform.architecture.version/payload/bin ).

Q: Why is my configuration dialog closing right away when I double-click or try to

configure it? Or why is my GUI responding so slow?

A: If you have any problems with the KNIME GUI or the opening of dialogues under

Linux you might be affected by a GTK bug. See the KNIME forum (e.g. here or here)

for a discussion and a possible solution. In short: set environment variable by calling

export SWT_GTK3=0 or edit knime.ini to make Eclipse use GTK2 by adding the follow-

ing two lines:

–launcher.GTK_version

2

macOS

Q: I have problems installing RServe in my local R installation for the R KNIME Exten-

sion:

A: If you encounter linker errors while running install.packages(”Rserve”) when using

an R installation from homebrew, make sure gettext is installed via homebrew and

you pass flags to its lib directory. See StackOverflow question 21370363.

Q: Although I Ctrl + Leftclick TOPPAS.app or TOPPView.app and accept the risk of a

downloaded application, the icon only shortly blinks and nothing happens:

A: It seems like your OS is not able to remove the quarantine flag. If you trust us,

74

https://tech.knime.org/forum/knime-general/ubuntu-1604-slow-performance
https://tech.knime.org/forum/knime-users/knime-300-crashes-after-splash-screen
http://stackoverflow.com/questions/21370363/link-error-installing-rcpp-library-not-found-for-lintl


please remove it yourself by typing the following command in your Terminal.app:
xattr -r -d com.apple.quarantine /Applications/OpenMS-2.1.0

Windows

Q: KNIME has problems getting the requirements for some of the OpenMS nodes on

Windows, what can I do?

A: Get the prerequisites installer here or install NET3.5, NET4 and VCRedist10.0 (po-

tentially also 12.0) yourself.

9.1.4 Nodes

Q:Why ismy XTandemAdapter printing empty or VERY few results, although I did not

use an e-value cutoff?

A: Due to a bug in OpenMS 2.0.1 the XTandemAdapter requires a default parameter

file. Give it the default configuration in
YOURKNIMEFOLDER/plugins/de.openms.platform.architecture.version/payload/share/
CHEMISTRY/XTandem_default_input.xml as a third input file. This should be resolved in

newer versions though, such that it automatically uses this file if the optional inputs

is empty.

Q:DoMSGFPlusAdapter andLuciphorAdaptergenerally behavedifferent/unexpected?

A: These are Java processes that are started underneath. For example they can not

be killed during cancellation of the node. This should not affect its performance,

however. In rare cases they might require changes to the configuration under which

your JavaVM is running. AlsoMSGFPlus is creating several auxiliary files and accesses

themduring execution. Someusers therefore experienced problemswhen executing

several instances at the same time.

9.2 Sources of support

If your questions could not be answered by the FAQ, please feel free to turn to our

developers via one of the following means:

• File an issue on GitHub

• Write to the Mailing List

• Open a thread on the KNIME Community Contributions forum for OpenMS

75

https://sourceforge.net/projects/open-ms/files/OpenMS/OpenMS-2.3/OpenMS-2.3-prerequisites-installer.exe/download
https://github.com/OpenMS/OpenMS/issues
mailto:open-ms-developers@lists.sourceforge.net
https://tech.knime.org/forum/openms


References

[1] OpenMS, OpenMS home page [online]. 6

[2] M. Sturm, A. Bertsch, C. Gröpl, A. Hildebrandt, R. Hussong, E. Lange, N. Pfeifer,

O. Schulz-Trieglaff, A. Zerck, K. Reinert, and O. Kohlbacher, OpenMS - an open-

source software framework for mass spectrometry., BMC bioinformatics 9(1)

(2008), doi:10.1186/1471-2105-9-163. 6, 52

[3] H. L. Röst, T. Sachsenberg, S. Aiche, C. Bielow, H.Weisser, F. Aicheler, S. Andreotti,

H.-C. Ehrlich, P. Gutenbrunner, E. Kenar, et al., OpenMS: a flexible open-source

software platform for mass spectrometry data analysis, Nature Methods 13(9),

741–748 (2016). 6

[4] O. Kohlbacher, K. Reinert, C. Gröpl, E. Lange, N. Pfeifer, O. Schulz-Trieglaff, and

M. Sturm, TOPP–the OpenMS proteomics pipeline., Bioinformatics 23(2) (Jan.

2007). 6, 52

[5] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C. Sieb,

K. Thiel, and B. Wiswedel, KNIME: The Konstanz Information Miner, in Stud-

ies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007),

Springer, 2007. 6

[6] M. Sturm and O. Kohlbacher, TOPPView: An Open-Source Viewer for Mass

Spectrometry Data, Journal of proteome research 8(7), 3760–3763 (July 2009),

doi:10.1021/pr900171m. 6

[7] L. Y. Geer, S. P. Markey, J. A. Kowalak, L. Wagner, M. Xu, D. M. Maynard, X. Yang,

W. Shi, and S. H. Bryant, Open mass spectrometry search algorithm, Journal of

Proteome Research 3(5), 958–964 (2004). 24

[8] A. Chawade,M. Sandin, J. Teleman, J.Malmström, and F. Levander, Data Process-

ing Has Major Impact on the Outcome of Quantitative Label-Free LC-MS Anal-

ysis, Journal of Proteome Research 14(2), 676–687 (2015), PMID: 25407311,

arXiv:http://dx.doi.org/10.1021/pr500665j, doi:10.1021/pr500665j. 24

[9] D. S. Wishart, D. Tzur, C. Knox, et al., HMDB: the Human Metabolome Database,

Nucleic Acids Res 35(Database issue), D521–6 (Jan 2007), doi:10.1093/nar/

gkl923. 41

[10] D. S. Wishart, C. Knox, A. C. Guo, et al., HMDB: a knowledgebase for the human

metabolome, Nucleic Acids Res 37(Database issue), D603–10 (Jan 2009), doi:

10.1093/nar/gkn810. 41

76

http://www.OpenMS.de
http://dx.doi.org/10.1186/1471-2105-9-163
http://dx.doi.org/10.1186/1471-2105-9-163
http://dx.doi.org/10.1186/1471-2105-9-163
http://view.ncbi.nlm.nih.gov/pubmed/17237091
http://dx.doi.org/10.1021/pr900171m
http://dx.doi.org/10.1021/pr900171m
http://dx.doi.org/10.1021/pr900171m
http://pubs.acs.org/doi/abs/10.1021/pr0499491
http://dx.doi.org/10.1021/pr500665j
http://dx.doi.org/10.1021/pr500665j
http://dx.doi.org/10.1021/pr500665j
http://arxiv.org/abs/http://dx.doi.org/10.1021/pr500665j
http://dx.doi.org/10.1021/pr500665j
http://dx.doi.org/10.1093/nar/gkl923
http://dx.doi.org/10.1093/nar/gkl923
http://dx.doi.org/10.1093/nar/gkn810
http://dx.doi.org/10.1093/nar/gkn810


[11] D. S. Wishart, T. Jewison, A. C. Guo, M. Wilson, C. Knox, et al., HMDB 3.0–The

Human Metabolome Database in 2013, Nucleic Acids Res 41(Database issue),

D801–7 (Jan 2013), doi:10.1093/nar/gks1065. 41

[12] J. Griss, A. R. Jones, T. Sachsenberg, M. Walzer, L. Gatto, J. Hartler, G. G.

Thallinger, R. M. Salek, C. Steinbeck, N. Neuhauser, J. Cox, S. Neumann, J. Fan,

F. Reisinger, Q.-W. Xu, N. Del Toro, Y. Perez-Riverol, F. Ghali, N. Bandeira, I. Xe-

narios, O. Kohlbacher, J. A. Vizcaino, and H. Hermjakob, The mzTab Data Ex-

change Format: communicating MS-based proteomics and metabolomics ex-

perimental results to a wider audience, Mol Cell Proteomics (Jun 2014), doi:

10.1074/mcp.O113.036681. 42

[13] H. L. Röst, G. Rosenberger, P. Navarro, L. Gillet, S. M. Miladinovic, O. T. Schu-

bert, W. Wolski, B. C. Collins, J. Malmstrom, L. Malmström, and R. Aebersold,

OpenSWATH enables automated, targeted analysis of data-independent acqui-

sition MS data, Nature Biotechnology 32(3), 219–223 (Mar. 2014). 52, 56

[14] L. C. Gillet, P. Navarro, S. Tate, H. Röst, N. Selevsek, L. Reiter, R. Bonner, and

R. Aebersold, Targeted Data Extraction of the MS/MS Spectra Generated by

Data-independent Acquisition: A NewConcept for Consistent and Accurate Pro-

teome Analysis., Molecular & Cellular Proteomics 11(6) (June 2012), doi:

10.1074/mcp.O111.016717. 52

[15] A. Bertsch, C. Gröpl, K. Reinert, and O. Kohlbacher, OpenMS and TOPP: open

source software for LC-MS data analysis., Methods inmolecular biology (Clifton,

N.J.) 696, 353–367 (2011), doi:10.1007/978-1-60761-987-1_23. 52

[16] L. Reiter, O. Rinner, P. Picotti, R. Huttenhain, M. Beck, M.-Y. Brusniak, M. O. Hen-

gartner, and R. Aebersold, mProphet: automated data processing and statistical

validation for large-scale SRMexperiments, NatureMethods 8(5), 430–435 (May

2011), doi:10.1038/nmeth.1584. 52

[17] E. W. Deutsch, M. Chambers, S. Neumann, F. Levander, P.-A. Binz, J. Shofstahl,

D. S. Campbell, L. Mendoza, D. Ovelleiro, K. Helsens, L. Martens, R. Aebersold,

R. L. Moritz, and M.-Y. Brusniak, TraML—A Standard Format for Exchange of

Selected Reaction Monitoring Transition Lists, Molecular & Cellular Proteomics

11(4) (Apr. 2012), doi:10.1074/mcp.R111.015040. 52

[18] C. Escher, L. Reiter, B. MacLean, R. Ossola, F. Herzog, J. Chilton, M. J. Mac-

Coss, and O. Rinner, Using iRT, a normalized retention time for more tar-

geted measurement of peptides., Proteomics 12(8), 1111–1121 (Apr. 2012),

doi:10.1002/pmic.201100463. 53

77

http://dx.doi.org/10.1093/nar/gks1065
http://dx.doi.org/10.1074/mcp.O113.036681
http://dx.doi.org/10.1074/mcp.O113.036681
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1074/mcp.O111.016717
http://dx.doi.org/10.1007/978-1-60761-987-1_23
http://dx.doi.org/10.1007/978-1-60761-987-1_23
http://dx.doi.org/10.1007/978-1-60761-987-1_23
http://dx.doi.org/10.1038/nmeth.1584
http://dx.doi.org/10.1038/nmeth.1584
http://dx.doi.org/10.1038/nmeth.1584
http://dx.doi.org/10.1074/mcp.R111.015040
http://dx.doi.org/10.1074/mcp.R111.015040
http://dx.doi.org/10.1074/mcp.R111.015040
http://dx.doi.org/10.1002/pmic.201100463
http://dx.doi.org/10.1002/pmic.201100463
http://dx.doi.org/10.1002/pmic.201100463

	General remarks
	Getting started
	Installation
	Installation from the OpenMS USB stick
	Installation from the internet

	Data conversion
	MSConvertGUI
	msconvert

	Data visualization using TOPPView
	Introduction to KNIME / OpenMS
	Plugin and dependency installation
	KNIME concepts
	Overview of the graphical user interface
	Creating workflows
	Sharing workflows
	Duplicating workflows
	A minimal workflow
	Advanced topic: Meta nodes
	Advanced topic: R integration


	Label-free quantification of peptides
	Introduction
	Peptide Identification
	Bonus task: identification using several search engines

	Quantification
	Combining quantitative information across several label-free experiments
	Basic data analysis in KNIME


	Protein Inference
	Extending the LFQ workflow by protein inference and quantification
	Statistical validation of protein inference results
	Data preparation
	ROC curve of protein ID
	Posterior probability and FDR of protein IDs


	Label-free quantification of metabolites
	Introduction
	Quantifying metabolites across several experiments
	Identifying metabolites in LC-MS/MS samples
	Convert your data into a KNIME table
	Bonus task: Visualizing data

	Downstream data analysis and reporting
	Signal processing and data preparation for identification
	Data preparation for quantification
	Statistical analysis
	Interactive visualization
	Advanced visualization
	Data preparation for Reporting

	Spectral library search
	Manual validation


	OpenSWATH
	Introduction
	Installation of OpenSWATH
	Installation of mProphet
	Generating the Assay Library
	Generating TraML from transition lists
	Appending decoys to a TraML

	OpenSWATH KNIME
	From the example dataset to real-life applications

	An introduction to pyOpenMS
	Introduction
	Installation
	Windows
	Mac OS X 10.10
	Linux

	Build instructions
	Your first pyOpenMS tool: pyOpenSwathFeatureXMLToTSV
	Basics
	Loading data structures with pyOpenMS
	Converting data in the featureXML to a TSV
	Putting things together
	Bonus task


	Quality control
	Introduction
	Building a qcML file per run
	Adding brand new QC metrics
	Set QC metrics

	Troubleshooting guide
	FAQ
	How to debug KNIME and/or the OpenMS nodes?
	General
	Platform-specific problems
	Nodes

	Sources of support


