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1 General remarks

• This handout will guide you through an introductory tutorial for the OpenMS/TOPP

software package [1].

• OpenMS [2, 3] is a versatile open-source library for mass spectrometry data

analysis. Based on this library, we offer a collection of command-line tools ready

to be used by end users. These so-called TOPP tools (short for ”The OpenMS

Proteomics Pipeline”) [4] can be understood as small building blocks of arbi-

trarily complex data analysis workflows.

• In order to facilitate workflow construction, OpenMS was integrated into

KNIME [5], the Konstanz Information Miner, an open-source integration plat-

form providing a powerful and flexible workflow system combined with

advanced data analytics, visualization, and report capabilities. Raw MS data

as well as the results of data processing using TOPP can be visualized using

TOPPView [6].

• This tutorial was designed for use in a hands-on tutorial session but can also

be worked through at home using the online resources. You will become famil-

iar with some of the basic functionalities of OpenMS/TOPP, TOPPView, as well

as KNIME and learn how to use a selection of TOPP tools used in the tutorial

workflows.

• All sample data referenced in this tutorial can be found in the

C: / Example_Data folder, on the USB stick that came with this tutorial, or

released online on our GitHub repository OpenMS/Tutorials.
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2 Getting started

2.1 Installation

Before we get started we will install OpenMS and KNIME. If you take part in a training

session you will have likely received an USB stick from us that contains the required

data and software. If we provide laptops with the software you may of course skip

the installation process and continue reading the next section.

2.1.1 Installation from the OpenMS USB stick

Please choose the directory that matches your operating system and execute the in-

staller.

For example for Windows you call

• the OpenMS installer: Windows / OpenMS-2.7.0-Win64.exe

• the KNIME installer: Windows / KNIME-4.4.1-Installer-64bit.exe

• OpenMS prerequisites (Windows-only): After installation, before your first use

of the OpenMS plugin in KNIME you will be asked to download it automatically

if certain requirements are not found in your Windows registry. Alternatively,

you can get a bundled version here or on the OpenMS USB stick ( Windows /

OpenMS-2.7-prerequisites-installer.exe ).

on macOS you call

• the OpenMS installer: Mac / OpenMS-2.7.0-macOS.dmg

• the KNIME installer: Mac / knime_4.4.1.app.macosx.cocoa.x86_64.dmg

and follow the instructions. For the OpenMS installation on macOS, you need

to accept the license drag and drop the OpenMS folder into your Applications folder.

Note: Due to increasing security measures for downloaded apps (e.g. path

randomization) onmacOS you might need to open TOPPView.app and TOP-

PAS.app while holding ctrl and accept the warning. If the app still does not

open, you might need to move them from Applications OpenMS-2.7.0 to

e.g. your Desktop and back.

On Linux you can extract KNIME to a folder of your choice and for TOPPView you

need to install OpenMS via your package manager or build it on your own with the

instructions under www.openms.de/documentation.
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Note: If you have installed OpenMS on Linux or macOS via your package

manager (for instance by installing the OpenMS-2.7.0-Linux.deb package),

then you need to set the OPENMS_DATA_PATH variable to the directory contain-

ing the shared data (normally /usr/share/OpenMS). This must be done prior

to running any TOPP tool.

2.1.2 Installation from the internet

If you are working through this tutorial at home you can get the installers under the

following links:

• OpenMS: https://www.openms.de/download/openms-binaries

• KNIME: https://www.knime.org/downloads/overview

• OpenMS prerequisites (Windows-only): After installation, before your first use

of the OpenMS plugin in KNIME you will be asked to download it automatically

if certain requirements are not found in your Windows registry. Alternatively,

you can get a bundled version here.

Choose the installers for the platform you are working on.

2.2 Data conversion

Each MS instrument vendor has one or more formats for storing the acquired data.

Converting these data into an open format (preferably mzML) is the very first step

when you want to work with open-source mass spectrometry software. A freely avail-

able conversion tool is MSConvert, which is part of a ProteoWizard installation. All files

used in this tutorial have already been converted tomzML by us, so you do not need

to perform the data conversion yourself. However, we provide a small raw file so you

can try the important step of raw data conversion for yourself.

Note: The OpenMS installation package for Windows automatically installs

ProteoWizard, so you do not need to download and install it separately. Due

to restrictions from the instrument vendors, file format conversion for most

formats is only possible on Windows systems. In practice, performing the

conversion to mzML on the acquisition PC connected to the instrument is

usually the most convenient option.

To convert raw data to mzML using ProteoWizard you can either use MSConvertGUI (a

graphical user interface) or msconvert (a simple command line tool). Both tools are
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Figure 1: MSConvertGUI (part of ProteoWizard), allows converting raw files to mzML.
Select the raw files you want to convert by clicking on the browse button and then
on Add. Default parameters can usually be kept as-is. To reduce the initial data size,
make sure that the peakPicking filter (converts profile data to centroided data (see
Fig. 2)) is listed, enabled (true) and applied to all MS levels (parameter ”1-”). Start the
conversion process by clicking on the Start button.

available in:

C: / Program Files / OpenMS-2.7.0 / share / OpenMS / THIRDPARTY / pwiz-bin.

You can find a small RAW file on the USB stick C: / Example_Data Introduction

datasets raw.

2.2.1 MSConvertGUI

MSConvertGUI (see Fig. 1) exposes the main parameters for data conversion in a con-

venient graphical user interface.

2.2.2 msconvert

The msconvert command line tool has no user interface but offers more options than

the application MSConvertGUI. Additionally, since it can be used within a batch script,

it allows converting large numbers of files and can be much more easily automatized.

To convert and pick the file raw_data_file.RAW you may write:
msconvert raw_data_file.RAW --filter ”peakPicking true 1-”

in your command line.
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Figure 2: The amount of data in a spectra is reduced by peak picking. Here a profile
spectrum (blue) is converted to centroided data (green). Most algorithms from this
point on will work with centroided data.

To convert all RAW files in a folder may write:
msconvert *.RAW -o my_output_dir

Note: To display all options you may type msconvert --help . Additional infor-

mation is available on the ProteoWizard web page.

2.2.3 ThermoRawFileParser

Recently the open-source platform independent ThermoRawFileParser tool has been

developed. While Proteowizard and MSConvert are only available for Windows sys-

tems this new tool allows to also convert raw data on Mac or Linux.

Note: To learn more about the ThermoRawFileParser and how to use it in

KNIME see Section 2.4.7

2.3 Data visualization using TOPPView

Visualizing the data is the first step in quality control, an essential tool in understand-

ing the data, and of course an essential step in pipeline development. OpenMS pro-

vides a convenient viewer for some of the data: TOPPView.

We will guide you through some of the basic features of TOPPView. Please familiar-

ize yourself with the key controls and visualization methods. We will make use of

these later throughout the tutorial. Let’s start with a first look at one of the files of

our tutorial data set. Note that conceptually, there are no differences in visualizing

metabolomic or proteomic data. Here, we inspect a simple proteomic measurement:
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Figure 3: TOPPView, the graphical application for viewing mass spectra and analysis
results. Top window shows a small region of a peak map. In this 2D representation
of the measured spectra, signals of eluting peptides are colored according to the raw
peak intensities. The lower window displays an extracted spectrum (=scan) from the
peak map. On the right side, the list of spectra can be browsed.
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Figure 4: 3D representation of the measured spectra, signals of eluting peptides are
colored according to the raw peak intensities.

• Start TOPPView (see Windows’ Start-Menu or Applications OpenMS-2.7.0 on

macOS)

• Go to File Open File , navigate to the directory where you copied the contents

of the USB stick to, and select Example_Data Introduction datasets small

velos005614.mzML . This file contains only a reduced LC-MS map 1 of a label-free

proteomic platelet measurement recorded on an Orbitrap velos. The other two

mzML files contain technical replicates of this experiment. First, we want to

obtain a global view on the whole LC-MS map - the default option Map view 2D

is the correct one and we can click the Ok button.

• Play around.

• Three basic modes allow you to interact with the displayed data: scrolling, zoom-

ing and measuring:

– Scroll mode

* Is activated by default (though each loaded spectra file is displayed

zoomed out first, so you do not need to scroll).

1only a selected RT and m/z range was extracted using the TOPP tool FileFilter
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* Allows you to browse your data by moving around in RT and m/z range.

* When zoomed in, you can scroll through the spectra. Click-drag on the

current view.

* Arrow keys can be used to scroll the view as well.

– Zoom mode

* Zooming into the data: either mark an area in the current view with

your mouse while holding the left mouse button plus the Ctrl key to

zoom to this area or use your mouse wheel to zoom in and out.

* All previous zoom levels are stored in a zoom history. The zoom history

can be traversed using Ctrl + + or Ctrl + - or the mouse wheel (scroll

up and down).

* Pressing backspace zooms out to show the full LC-MS map (and

also resets the zoom history).

– Measure mode

* It is activated using the (shift) key.

* Press the left mouse button down while a peak is selected and drag

the mouse to another peak to measure the distance between peaks.

* This mode is implemented in the 1D and 2D mode only.

• Right click on your 2D map and select Switch to 3D view and examine your data in

3D mode (see Fig. 4)

• Go back to the 2D view. In 2D mode, visualize your data in different inten-

sity normalization modes, use linear , percentage, snap and log-view (icons on

the upper left tool bar). You can hover over the icons for additional informa-

tion.

Note: On macOS, due to a bug in one of the external libraries used by

OpenMS, you will see a small window of the 3D mode when switching

to 2D. Close the 3D tab in order to get rid of it.

• In TOPPView you can also execute TOPP tools. Go to Tools Apply tool (whole layer)

and choose a TOPP tool (e.g., FileInfo) and inspect the results.

Dependent on your data MS/MS spectra can be visualized as well (see Fig.5) . You can

do so, by double-click on the MS/MS spectrum shown in scan view.
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Figure 5: MS/MS spectrum

2.4 Introduction to KNIME / OpenMS

Using OpenMS in combination with KNIME, you can create, edit, open, save, and run

workflows that combine TOPP tools with the powerful data analysis capabilities of

KNIME. Workflows can be created conveniently in a graphical user interface. The pa-

rameters of all involved tools can be edited within the application and are also saved

as part of the workflow. Furthermore, KNIME interactively performs validity checks

during the workflow editing process, in order to make it more difficult to create an

invalid workflow.

Throughout most parts of this tutorial you will use KNIME to create and execute work-

flows. The first step is to make yourself familiar with KNIME. Additional information

on basic usage of KNIME can be found on the KNIME Getting Started page. However,

the most important concepts will also be reviewed in this tutorial.

2.4.1 Plugin and dependency installation

Before we can start with the tutorial we need to install all the required extensions for

KNIME. Since KNIME 3.2.1 the program automatically detects missing plugins when

you open a workflow but to make sure that the right source for the OpenMS plu-

gin is chosen, please follow the instructions here. First, we install some additional

extensions that are required by our OpenMS nodes or used in the Tutorials e.g. for

visualization and file handling.

1. Click on Help Install New Software...

2. From the Work with: drop-down list select http://update.knime.com/analytics-platform/4.4

3. Now select the following plugins from the KNIME & Extensions category

• KNIME Base Chemistry Types & Nodes

• KNIME Chemistry Add-Ons

15

https://tech.knime.org/knime


• KNIME File Handling Nodes (required for OpenMS nodes in general)

• KNIME Interactive R Statistics Integration

• KNIME Report Designer

• KNIME SVG Support

4. Click on Next and follow the instructions (you may but don’t need to restart

KNIME now)

5. Click again on Help Install New Software...

6. From the Work with: drop-down list select
http://update.knime.com/community-contributions/trusted/4.4

7. Now select the following plugin from the ”KNIME Community Contributions -

Cheminformatics” category

• RDKit KNIME integration

8. Click on Next and follow the instructions and after a restart of KNIME the de-

pendencies will be installed.

In addition, we need to install R for the statistical downstream analysis. Choose the

directory that matches your operating system, double-click the R installer and follow

the instructions. We recommend to use the default settings whenever possible. On

macOS you also need to install XQuartz from the same directory.

Afterwards open your R installation. If you use Windows, you will find an ”R x64

3.6.X” icon on your desktop. If you use macOS, you will find R in your Applications

folder. In R type the following lines (you might also copy them from the file R

install_R_packages.R folder on the USB stick):

install.packages('Rserve',,”http://rforge.net/”,type=”source”)
install.packages(”Cairo”)
install.packages(”devtools”)
install.packages(”ggplot2”)
install.packages(”ggfortify”)
if (!requireNamespace(”BiocManager”, quietly = TRUE))

install.packages(”BiocManager”)
BiocManager::install()
BiocManager::install(c(”MSstats”))

In KNIME, click on KNIME Preferences , select the category KNIME R and set the ”Path

to R Home” to your installation path. You can use the following settings, if you in-

stalled R as described above:
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• Windows: C: \Program Files \R \R-3.6.X (where X is the version you used to install

the above libraries)

• macOS: /Library/Frameworks/R.framework/Versions/3.6/Resources

You are now ready to install the OpenMS nodes.

• Open KNIME.

• Click on Help Install New Software...

We included a custom KNIME update site to install the OpenMS KNIME plugins

from the USB stick. If you do not have a stick available, please see below.

• In the now open dialog choose Add... (in the upper right corner of the dialog) to

define a new update site. In the opening dialog enter the following details.

Name: OpenMS 2.7 UpdateSite

Location: file:/KNIMEUpdateSite/2.7.0/

• After pressing OK KNIME will show you all the contents of the added Update

Site.

• Note: From now on, you can use this repository for plugins in the Work with:

drop-down list.

• Select the OpenMS nodes in the ”Uncategorized” category and click Next .

• Follow the instructions and after a restart of KNIME the OpenMS nodes will be

available in the Node repository under “Community Nodes”.

Alternatively, you can try these steps that will install the OpenMS KNIME plugins

from the internet. Note that download can be slow.

• In the now open dialog choose Add... (in the upper right corner of the dialog) to

define a new update site. In the opening dialog enter the following details.

Name: OpenMS 2.5 UpdateSite

Location:

https://abibuilder.informatik.uni-tuebingen.de/archive/openms/knime-plugin/updateSite/nightly/

• After pressing OK KNIME will show you all the contents of the added Update

Site.

• Note: From now on, you can use this repository for plugins in the Work with:

drop-down list.
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• Select the OpenMS nodes in the ”Uncategorized” category and click Next .

• Follow the instructions and after a restart of KNIME the OpenMS nodes will be

available in the Node repository under “Community Nodes”.

2.4.2 KNIME concepts

A workflow is a sequence of computational steps applied to a single or multiple in-

put data to process and analyze the data. In KNIME such workflows are implemented

graphically by connecting so-called nodes. A node represents a single analysis step

in a workflow. Nodes have input and output ports where the data enters the node

or the results are provided for other nodes after processing, respectively. KNIME dis-

tinguishes between different port types, representing different types of data. The

most common representation of data in KNIME are tables (similar to an excel sheet).

Ports that accept tables are marked with a small triangle. For OpenMS nodes, we use

a different port type, so called file ports, representing complete files. Those ports

are marked by a small blue box. Filled blue boxes represent mandatory inputs and

empty blue boxes optional inputs. The same holds for output ports, despite you can

deactivate them in the configuration dialog (double-click on node) under the Out-

putTypes tab. After execution, deactivated ports will be marked with a red cross and

downstream nodes will be inactive (not configurable).

A typical OpenMS workflow in KNIME can be divided in two conceptually different

parts:

• Nodes for signal and data processing, filtering and data reduction. Here, files

are passed between nodes. Execution times of the individual steps are typically

longer for these types of nodes as they perform the main computations.

• Downstream statistical analysis and visualization. Here, tables are passed be-

tween nodes and mostly internal KNIME nodes or nodes from third-party statis-

tics plugins are used. The transfer from files (produced by OpenMS) and tables

usually happens with our provided Exporter and Reader nodes (e.g. MzTabEx-

porter followed by MzTabReader).

Moreover, nodes can have three different states, indicated by the small traffic light

below the node.

• Inactive, failed, and not yet fully configured nodes are marked red.

• Configured but not yet executed nodes are marked yellow.

• Successfully executed nodes are marked green.
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If the node execution fails, the node will switch to the red state. Other anoma-

lies and warnings like missing information or empty results will be presented with a

yellow exclamation mark above the traffic light. Most nodes will be configured as

soon as all input ports are connected. Some nodes need to know about the output

of the predecessor and may stay red until the predecessor was executed. If nodes

still remain in a red state, probably additional parameters have to be provided in the

configuration dialog that can neither be guessed from the data nor filled with sen-

sible defaults. In this case, or if you want to customize the default configuration in

general, you can open the configuration dialog of a node with a double-click on the

node. For all OpenMS nodes you will see a configuration dialog like the one shown in

Figure 6.

Note:OpenMS distinguishes between normal parameters and advanced pa-

rameters. Advanced parameters are by default hidden from the users since

they should only rarely be customized. In case you want to have a look at the

parameters or need to customize them in one of the tutorials you can show

them by clicking on the checkbox Show advanced parameter in the lower part of

the dialog. Afterwards the parameters are shown in a light gray color.

The dialog shows the individual parameters, their current value and type, and, in

the lower part of the dialog, the documentation for the currently selected param-

eter. Please also note the tabs on the top of the configuration dialog. In the case of

OpenMS nodes, there will be another tab called OutputTypes. It contains dropdown

menus for every output port that let you select the output filetype that you want the

node to return (if the tool supports it). For optional output ports you can select Inac-

tive such that the port is crossed out after execution and the associated generation

of the file and possible additional computations are not performed. Note that this

will deactivate potential downstream nodes connected to this port.

2.4.3 Overview of the graphical user interface

The graphical user interface (GUI) of KNIME consists of different components or so-

called panels that are shown in Figure 7. We will briefly introduce the individual pan-

els and their purposes below.

Workflow Editor: The workflow editor is the central part of the KNIME GUI. Here you

assemble the workflow by adding nodes from the Node Repository via ”drag &

drop”. For quick creation of a workflow, note that double-clicking on a node in

the repository automatically connects it to the selected node in the workbench

(connecting all the inputs with as many fitting outputs of the last node). Man-

ually, nodes can be connected by clicking on the output port of one node and
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Figure 6: Node configuration dialog of an OpenMS node.

Figure 7: The KNIME workbench.
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dragging the edge until releasing the mouse at the desired input port of the

next node. Deletions are possible by selecting nodes and/or edges and press-

ing Del or ( Fn +) Backspace depending on your OS and settings. Multiselection

happens via dragging rectangles with the mouse or adding elements to the se-

lection by clicking them while holding down Ctrl .

KNIME Explorer: Shows a list of available workflows (also called workflow projects).

You can open a workflow by double-clicking it. A new workflow can be created

with a right-click in the Workflow Explorer followed by choosing New KNIME Workflow...

from the appearing context menu. Remember to save your workflow often with

the Ctrl + S shortcut.

Workflow Coach (since KNIME 3.2.1): Shows a list of suggested following nodes, based

on the last added/clicked nodes. When you are not sure which node to choose

next, you have a reasonable suggestion based on other users behavior there.

Connect them to the last node with a double-click.

Node Repository: Shows all nodes that are available in your KNIME installation. Ev-

ery plugin you install will provide new nodes that can be found here. The OpenMS

nodes can be found in Community Nodes OpenMS . Nodes for managing files (e.g.,

Input Files or Output Folders) can be found in Community Nodes GenericKnimeNodes .

You can search the node repository by typing the node name into the small text

box in the upper part of the node repository.

Outline: The Outline panel contains a small overview of the complete workflow. While

of limited use when working on a small workflow, this feature is very helpful as

soon as the workflows get bigger. You can adjust the zoom level of the explorer

by adjusting the percentage in the toolbar at the top of KNIME.

Console: In the console panel warning and error messages are shown. This panel will

provide helpful information if one of the nodes failed or shows a warning sign.

Node Description: As soon as a node is selected, the Node Description window will

show the documentation of the node including documentation for all its param-

eters and especially their in- and outputs, such that you know what types of data

nodes may produce or expect. For OpenMS nodes you will also find a link to the

tool page of the online documentation.

2.4.4 Creating workflows

Workflows can easily be created by a right click in the Workflow Explorer followed by

clicking on New KNIME Workflow... .
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2.4.5 Sharing workflows

To be able to share a workflow with others, KNIME supports the import and export of

complete workflows. To export a workflow, select it in the Workflow Explorer and se-

lect File Export KNIME Workflow... . KNIME will export workflows as a knwf file contain-

ing all the information on nodes, their connections, and their parameter configura-

tion. Thoseknwf files can again be imported by selecting File Import KNIME Workflow... .

Note: For your convenience we added all workflows discussed in this tuto-

rial to the Workflows folder on the USB Stick. Additionally, the workflow

files can be found on our GitHub repository. If you want to check your own

workflow by comparing it to the solution or got stuck, simply import the full

workflow from the corresponding knwf file and after that double-click it in

your KNIME Workflow repository to open it.

2.4.6 Duplicating workflows

In this tutorial, a lot of the workflows will be created based on the workflow from a

previous task. To keep the intermediate workflows, we suggest you create copies of

your workflows so you can see the progress. To create a copy of your workflow, save

it, close it and follow the next steps.

• Right click on the workflow you want to create a copy of in the Workflow Ex-

plorer and select Copy .

• Right click again somewhere on the workflow explorer and select Paste .

• This will create a workflow with same name as the one you copied with a (2)

appended.

• To distinguish them later on you can easily rename the workflows in the Work-

flow Explorer by right clicking on the workflow and selecting Rename .

Note: To rename a workflow it has to be closed, too.

2.4.7 A minimal workflow

Let us now start with the creation of our very first, very simple workflow. As a first

step, we will gather some basic information about the data set before starting the

actual development of a data analysis workflow. This minimal workflow can also be

used to check if all requirements are met and that your system is compatible.

• Create a new workflow.
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• Add an Input Filenode and an Output Foldernode (to be found in Community Nodes
GenericKnimeNodes IO and a FileInfonode (to be found in the category Community Nodes
OpenMS File Handling ) to the workflow.

• Connect the Input File node to the FileInfo node, and the first output port of

the FileInfo node to the Output Folder node.

Note: In case you are unsure about which node port to use, hovering

the cursor over the port in question will display the port name and

what kind of input it expects.

The complete workflow is shown in Figure 8. FileInfo can produce two different

kinds of output files.

• All nodes are still marked red, since we are missing an actual input file. Double-

click the Input File node and select Browse . In the file system browser select

Example_Data Introduction datasets tiny velos005614.mzML and click Open .

Afterwards close the dialog by clicking Ok .

Note:Make sure to use the “tiny” version this time, not “small”, for the

sake of faster workflow execution.

• The Input File node and the FileInfo node should now have switched to yel-

low, but the Output Folder node is still red. Double-click on the Output Folder

node and click on Browse to select an output directory for the generated data.

• Great! Your first workflow is now ready to be run. Press + F7 (shift key + F7;

or the button with multiple green triangles in the KNIME Toolbar) to execute

the complete workflow. You can also right click on any node of your workflow

and select Execute from the context menu.

• The traffic lights tell you about the current status of all nodes in your workflow.

Currently running tools show either a progress in percent or a moving blue bar,

nodes waiting for data show the small word “queued”, and successfully exe-

cuted ones become green. If something goes wrong (e.g., a tool crashes), the

light will become red.

• In order to inspect the results, you can just right-click the Output Folder node

and select View: Open the output folder . You can then open the text file and inspect

its contents. You will find some basic information of the data contained in the

mzML file, e.g., the total number of spectra and peaks, the RT and m/z range,

and how many MS1 and MS2 spectra the file contains.
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Figure 8: A minimal workflow calling FileInfo on a single file.

Workflows are typically constructed to process a large number of files automati-

cally. As a simple example, consider you would like to convert multiple Thermo Raw

files into the mzML format. We will now modify the workflow to compute the same

information on three different files and then write the output files to a folder.

• We start from the previous workflow.

• First we need to replace our single input file with multiple files. Therefore we

add the Input Files node from the category Community Nodes GenericKnimeNodes
IO .

• To select the files we double-click on the Input Files node and click on Add . In

the filesystem browser we select all three files from the directory Example_Data

Introduction datasets tiny . And close the dialog with Ok .

• We now add two more nodes: the ZipLoopStart and the ZipLoopEnd node from

the category Community Nodes GenericKnimeNodes Flow .

• Afterwards we connect the Input Filesnode to the first port of the ZipLoopStart

node, the first port of the ZipLoopStart node to the FileConverter node, the

first output port of the FileConverternode to the first input port of the ZipLoopEnd

node, and the first output port of the ZipLoopEnd node to the Output Folder

node (NOT to the Output File). The complete workflow is shown in Figure 9

• The workflow is already complete. Simply execute the workflow and inspect

the output as before.

In case you had trouble to understand what ZipLoopStart and ZipLoopEnd do -

here is a brief explanation:

• The Input Files node passes a list of files to the ZipLoopStart node.

• The ZipLoopStart node takes the files as input, but passes the single files se-

quentially (that is: one after the other) to the next node.

• The ZipLoopEnd collects the single files that arrive at its input port. After all files

have been processed, the collected files are passed again as file list to the next

node that follows.
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Figure 9: A minimal workflow calling the FileConverter on multiple Thermo Raw files
in a loop.

Figure 10: Workflow to visualize a list of SMILES strings and filter them by predefined
substructures.

2.4.8 Digression: Working with chemical structures

Metabolomics analyses often involve working with chemical structures. Popular chem-

informatic toolkits such as RDKit [7] or CDK [8] are available as KNIME plugins and al-

low us to work with chemical structures directly from within KNIME. In particular, we

will use KNIME and RDKit to visualize a list of compounds and filter them by prede-

fined substructures. Chemical structures are often represented as SMILES (Simplified

molecular input line entry specification), a simple and compact way to describe com-

plex chemical structures as text. For example, the chemical structure of L-alanine can

be written as the SMILES string C[C@H](N)C(O)=O. As we will discuss later, all OpenMS

tools that perform metabolite identification will report SMILES as part of their result,

which can then be further processed and visualized using RDKit and KNIME.

Perform the following steps to build the workflow shown in in Fig. 10. You will use

this workflow to visualize a list of SMILES strings and filter them by predefined sub-

structures:

• Add the node File Reader, open the node configuration dialog and select the

file smiles.csv. This file has been exported from the Human Metabolome
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Figure 11: Resulting list of compounds that contains at least one aromatic carboxylic
acid group.

Database (HMDB) and contains the portion of the human metabolome that has

been detected and quantified. The file preview on the bottom of the dialog

shows that each compound is given by its HMDB accession, compound name,

and SMILES string. Click on the column header ’SMILES’ to change its properties.

Change the column type from ’string’ to ’smiles’ and close the dialog with Ok .

Afterwards the SMILES column will be visualized as chemical structures instead

of text directly within all KNIME tables.

• Add the node RDKit From Molecule and connect it to the File Reader. This node

will use the provided SMILES strings to add an additional column that is required

by RDKit.

• Add the node RDKit Functional Group Filter and open the node configuration

dialog. You can use this dialog to filter the compounds by any combination of

functional groups. In this case we want to find all compounds that contain at

least one aromatic carboxylic acid group. To do this, set this group as active and

choose ’>=’ and ’1’.

• Connect the first output port (Molecules passing the filter) to a CSV Writernode

to save the filtered metabolites to a file. Right click RDKit Functional Group

Filter and select the view ’Molecules passing the filter’ to inspect the selected

compounds in KNIME. How many compounds pass the chosen filter (see Fig. 11)?
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2.4.9 Advanced topic: Metanodes

Workflows can get rather complex and may contain dozens or even hundreds of nodes.

KNIME provides a simple way to improve handling and clarity of large workflows:

Metanodes allow to bundle several nodes into a single Metanode.

Select multiple nodes (e.g. all nodes of the ZipLoop including the start

and end node). To select a set of nodes, draw a rectangle around them

with the left mouse button or hold Ctrl to add/remove single nodes

from the selection. Pro-tip: There is a Select Loop option when you right-

click a node in a loop, that does exactly that for you. Then, open the con-

text menu (right-click on a node in the selection) and select Create Metanode .

Enter a caption for the Metanode. The previously selected nodes are

now contained in the Metanode. Double-clicking on the Metanode will

display the contained nodes in a new tab window.

Task

Create the Metanode to let it behave like an encapsulated single node.

First select the Metanode, open the context menu (right-click) and se-

lect Metanode Wrap . The differences between Metanodes and their

wrapped counterparts are marginal (and only apply when exposing user

inputs and workflow variables). Therefore we suggest to use standard

Metanodes to clean up your workflow and cluster common subparts

until you actually notice their limits.

Task

Undo the packaging. First select the (Wrapped) Metanode, open the con-

text menu (right-click) and select (Wrapped) Metanode Expand .

Task

2.4.10 Advanced topic: R integration

KNIME provides a large number of nodes for a wide range of statistical analysis, ma-

chine learning, data processing, and visualization. Still, more recent statistical analy-

sis methods, specialized visualizations or cutting edge algorithms may not be covered

in KNIME. In order to expand its capabilities beyond the readily available nodes, ex-

ternal scripting languages can be integrated. In this tutorial, we primarily use scripts

of the powerful statistical computing language R. Note that this part is considered
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advanced and might be difficult to follow if you are not familiar with R. In this case

you might skip this part.

R View (Table) allows to seamlessly include R scripts into KNIME. We will demon-

strate on a minimal example how such a script is integrated.

First we need some example data in KNIME, which we will generate us-

ing the Data Generator node. You can keep the default settings and

execute the node. The table contains four columns, each containing

random coordinates and one column containing a cluster number (Clus-

ter_0 to Cluster_3). Now place a R View (Table) node into the work-

flow and connect the upper output port of the Data Generator node

to the input of the R View (Table) node. Right-click and configure the

node. If you get an error message like ”Execute failed: R_HOME does

not contain a folder with name ’bin’.” or ”Execution failed: R Home is in-

valid.”: please change the R settings in the preferences. To do so open
File Preferences KNIME R and enter the path to your R installation

(the folder that contains the bin directory (e.g., C: Program Files R

R-3.4.3).

If you get an error message like: ”Execute failed: Could not find

Rserve package. Please install it in your R installation by running

”install.packages(’Rserve’)”.” You may need to run your R binary as ad-

ministrator (In windows explorer: right-click ”Run as administrator”) and

enter install.packages(’Rserve’) to install the package.

If R is correctly recognized we can start writing an R script. Consider

that we are interested in plotting the first and second coordinates and

color them according to their cluster number. In R this can be done in a

single line. In the R View (Table) text editor, enter the following code:

plot(x=knime.in$Universe_0_0, y=knime.in$Universe_0_1, main=”Plotting
column Universe_0_0 vs. Universe_0_1”, col=knime.in$”Cluster
Membership”)

↪→
↪→

Explanation: The table provided as input to the R View (Table)

node is available as R data.frame with name knime.in. Columns (also

listed on the left side of the R View window) can be accessed in the

usual R way by first specifying the data.frame name and then the col-

umn name (e.g. knime.in$Universe_0_0). plot is the plotting function

Task
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we use to generate the image. We tell it to use the data in column

Universe_0_0of the dataframe object knime.in (denoted as knime.in$Universe_0_0)

as x-coordinate and the other column knime.in$Universe_0_1as y-coordinate

in the plot. main is simply the main title of the plot and col the col-

umn that is used to determine the color (in this case it is the Cluster

Membership column).

Now press the Eval script and Show plot buttons.

Note:Note that we needed to put some extra quotes around Cluster Membership.

If we omit those, R would interpret the column name only up to the first

space (knime.in$Cluster) which is not present in the table and leads to an

error. Quotes are regularly needed if column names contain spaces, tabs or

other special characters like $ itself.
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3 Label-free quantification of peptides

3.1 Introduction

In this chapter, we will build a workflow with OpenMS / KNIME to quantify a label-free

experiment. Label-free quantification is a method aiming to compare the relative

amounts of proteins or peptides in two or more samples. We will start from the min-

imal workflow of the last chapter and, step-by-step, build a label-free quantification

workflow.

3.2 Peptide Identification

As a start, we will extend the minimal workflow so that it performs a peptide iden-

tification using the OMSSA [9] search engine. Since OpenMS version 1.10, OMSSA is

included in the OpenMS installation, so you do not need to download and install it

yourself.

• Let’s start by replacing the input files in our Input Files node by the three

mzML files in Example_Data Labelfree datasets lfq_spikein_dilution_1-3.mzML.

This is a reduced toy dataset where each of the three runs contains a constant

background of S. pyogenes peptides as well as human spike-in peptides in dif-

ferent concentrations. [10]

• Instead of FileInfo, we want to perform OMSSA identification, so we simply re-

place the FileInfo node with the OMSSAAdapter node Community Nodes OpenMS
Identification , and we are almost done. Just make sure you have connected the

ZipLoopStart node with the in port of the OMSSAAdapter node.

• OMSSA, like most mass spectrometry identification engines, relies on search-

ing the input spectra against sequence databases. Thus, we need to introduce

a search database input. As we want to use the same search database for all of

our input files, we can just add a single Input File node to the workflow and

connect it directly with the OMSSAAdapter database port. KNIME will automati-

cally reuse this Input node each time a new ZipLoop iteration is started. In order

to specify the database, select Example_Data Labelfree databases

s_pyo_sf370_potato_human_target_decoy_with_contaminants.fasta, and we have

a very basic peptide identification workflow.

Note: You might also want to save your new identification workflow

under a different name. Have a look at Section 2.4.6 for information

on how to create copies of workflows.
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• The result of a single OMSSA run is basically a number of peptide-spectrum-

matches (PSM) with a score each, and these will be stored in an idXML file. Now

we can run the pipeline and after execution is finished, we can have a first look

at the results: just open the input files folder with a file browser and from there

open an mzML file in TOPPView.

• Here, you can annotate this spectrum data file with the peptide identification

results. Choose Tools Annotate with identification from the menu and select the

idXML file that OMSSAAdapter generated (it is located within the output direc-

tory that you specified when starting the pipeline).

• On the right, select the tab Identification view . Using this view, you can see all iden-

tified peptides and browse the corresponding MS2 spectra.

Note:Opening the output file of OMSSAAdapter (the idXML file) directly

is also possible, but the direct visualization of an idXML file is less use-

ful.

• The search results stored in the idXML file can also be read back into a KNIME

table for inspection and subsequent analyses: Add a TextExporter node from
Community Nodes OpenMS File Handling to your workflow and connect the output

port of your OMSSAAdapter (the same port your ZipLoopEnd is connected to) to its

input port. This tool will convert the idXML file to a more human-readable text

file which can also be read into a KNIME table using the IDTextReader node. Add

an IDTextReader node ( Community Nodes OpenMS Conversion ) after TextExporter

and execute it. Now you can right-click IDTextReaderand select ID Table to browse

your peptide identifications.

• From here, you can use all the tools KNIME offers for analyzing the data in this

table. As a simple example, you could add a Histogram (local) node (from cat-

egory Views - Local (Swing ) ) node after IDTextReader, double-click it, select pep-

tide_charge as Histogram column, hit OK , and execute it. Right-clicking and

selecting Interactive View: Histogram view will open a plot showing the charge state

distribution of your identifications.

In the next step, we will tweak the parameters of OMSSA to better reflect the

instrument’s accuracy. Also, we will extend our pipeline with a false discovery rate

(FDR) filter to retain only those identifications that will yield an FDR of < 1 %.

• Open the configuration dialog of OMSSAAdapter. The dataset was recorded us-

ing an LTQ Orbitrap XL mass spectrometer, so we can set the precursor mass

tolerance to a smaller value, say 5 ppm. Set precursor_mass_tolerance to 5 and

precursor_error_units to ppm.

31



Note: Whenever you change the configuration of a node, the node

as well as all its successors will be reset to the Configured state (all

node results are discarded and need to be recalculated by executing

the nodes again).

• Setmax_precursor_charge to 5, in order to also search for peptides with charges

up to 5.

• Add Carbamidomethyl (C) as fixed modification and Oxidation (M) as variable

modification.

Note: To add a modification click on the empty value field in the con-

figuration dialog to open the list editor dialog. In the new dialog click
Add . Then select the newly added modification to open the drop down

list where you can select the correct modification.

• A common step in analyis is to search not only against a regular protein database,

but to also search against a decoy database for FDR estimation. The fasta file

we used before already contains such a decoy database. For OpenMS to know

which OMSSA PSM came from which part of the file (i.e. target versus decoy), we

have to index the results. To this end, extend the workflow with a PeptideIndexer

node Community Nodes OpenMS ID Processing . This node needs the idXML as input

as well as the database file (see Fig 12).

Note: You can direct the files of an Input File node to more than just

one destination port.

• The decoys in the database are prefixed with “DECOY_”, so we have to set de-

coy_string to DECOY_ and decoy_string_position to prefix in the configuration

dialog of PeptideIndexer.

• Now we can go for the FDR estimation, which the FalseDiscoveryRate node will

calculate for us (you will find it in Community Nodes OpenMS ID Processing ).

• In order to set the FDR level to 1%, we need an IDFilternode from Community Nodes
OpenMS ID Processing . Configuring its parameter score→ pep to 0.01 will do the

trick. The FDR calculations (embedded in the idXML) from the FalseDiscoveryRate

node will go into the in port of the IDFilter node.

• Execute your workflow and inspect the results using IDTextReader like you did

before. How many peptides did you identify at this FDR threshold?
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Note: The finished identification workflow is now sufficiently complex

that we might want to encapsulate it in a Metanode. For this, select

all nodes inside the ZipLoop (including the Input File node) and right-

click to select Collapse into Metanode and name it ID. Metanodes are use-

ful when you construct even larger workflows and want to keep an

overview.

Figure 12: OMSSA ID pipeline including FDR filtering.

3.2.1 Bonus task: identification using several search engines

Note: If you are ahead of the tutorial or later on, you can further improve

your FDR identification workflow by a so-called consensus identification us-

ing several search engines. Otherwise, just continue with section 3.3.

It has become widely accepted that the parallel usage of different search engines

can increase peptide identification rates in shotgun proteomics experiments. The

ConsensusID algorithm is based on the calculation of posterior error probabilities

(PEP) and a combination of the normalized scores by considering missing peptide se-

quences.

• Next to the OMSSAAdapter add a XTandemAdapter

Community Nodes OpenMS Identification node and set its parameters and ports anal-

ogously to the OMSSAAdapter. In XTandem, to get more evenly distributed scores,

we decrease the number of candidates a bit by setting the precursor mass tol-

erance to 5 ppm and the fragment mass tolerance to 0.1 Da.

• To calculate the PEP, introduce each a IDPosteriorErrorProbability Community Nodes
OpenMS ID Processing node to the output of each ID engine adapter node. This

will calculate the PEP to each hit and output an updated idXML.
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• To create a consensus, we must first merge these two files with a FileMerger

node Community Nodes GenericKnimeNodes Flow so we can then merge the corre-

sponding IDs with a IDMerger Community Nodes OpenMS File Handling .

• Now we can create a consensus identification with the ConsensusID Community Nodes
OpenMS ID Processing node. We can connect this to the PeptideIndexer and go

along with our existing FDR filtering.

Note:By default, X!Tandem takes additional enzyme cutting rules into

consideration (besides the specified tryptic digest). Thus for the tuto-

rial files, you have to set PeptideIndexer’s enzyme→ specificity param-

eter to none to accept X!Tandems non-tryptic identifications as well.

In the end the ID processing part of the workflow can be collapsed into a Metanode

to keep the structure clean (see Figure 13).

Figure 13: Complete consensus identification workflow.
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3.3 Quantification

Now that we have successfully constructed a peptide identification pipeline, we can

add quantification capabilities to our workflow.

• Add a FeatureFinderCentroidednode from Community Nodes OpenMS Quantitation

which gets input from the first output port of the ZipLoopStart node. Also, add

an IDMapper node (from Community Nodes OpenMS ID Processing ) which receives

input from the FeatureFinderCentroided node (Port 1) and the ID Metanode (or

IDFilter node (Port 0) if you haven’t used the Metanode). The output of the

IDMapper is then connected to an in port of the ZipLoopEnd node.

• FeatureFinderCentroided finds and quantifies peptide ion signals contained in

the MS1 data. It reduces the entire signal, i.e., all peaks explained by one and

the same peptide ion signal, to a single peak at the maximum of the chromato-

graphic elution profile of the monoisotopic mass trace of this peptide ion and

assigns an overall intensity.

• FeatureFinderCentroidedproduces a featureXML file as output, containing only

quantitative information of so-far unidentified peptide signals. In order to an-

notate these with the corresponding ID information, we need the IDMappernode.

• Run your pipeline and inspect the results of the IDMapper node in TOPPView.

Open the mzML file of your data to display the raw peak intensities.

• To assess how well the feature finding worked, you can project the features

contained in the featureXML file on the raw data contained in the mzML file. To

this end, open the featureXML file in TOPPView by clicking on File Open file and

add it to a new layer ( Open in New layer ). The features are now visualized on top

of your raw data. If you zoom in on a small region, you should be able to see the

individual boxes around features that have been detected (see Fig. 14). If you

hover over the the feature centroid (small circle indicating the chromatographic

apex of monoisotopic trace) additional information of the feature is displayed.

Note: The chromatographic RT range of a feature is about 30-60 s and

its m/z range around 2.5 m/z in this dataset. If you have trouble zoom-

ing in on a feature, select the full RT range and zoom only into the

m/z dimension by holding down Ctrl ( cmd on macOS) and repeatedly

dragging a narrow box from the very left to the very right.

• You can see which features were annotated with a peptide identification by first

selecting the featureXML file in the Layers window on the upper right side and
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Figure 14: Visualization of detected features (boxes) in TOPPView.

then clicking on the icon with the letters A, B and C on the upper icon bar. Now,

click on the small triangle next to that icon and select Peptide identification.

Figure 15: Extended workflow featuring peptide identification and quantification.

3.4 Combining quantitative information across several label-free

experiments

So far, we successfully performed peptide identification as well as quantification on

individual LC-MS runs. For differential label-free analyses, however, we need to iden-

tify and quantify corresponding signals in different experiments and link them to-

gether to compare their intensities. Thus, we will now run our pipeline on all three

available input files and extend it a bit further, so that it is able to find and link fea-

tures across several runs.

36



Figure 16: Complete identification and label-free quantification workflow.

• To find features across several maps, we first have to align them to correct for

retention time shifts between the different label-free measurements. With the

MapAlignerPoseClustering in Community Nodes OpenMS Map Alignment , we can align

corresponding peptide signals to each other as closely as possible by applying

a transformation in the RT dimension.

Note: MapAlignerPoseClustering consumes several featureXML files

and its output should still be several featureXML files containing the

same features, but with the transformed RT values. In its configura-

tion dialog, make sure that OutputTypes is set to featureXML.

• With the FeatureLinkerUnlabeledQTnode in Community Nodes OpenMS Map Alignment ,

we can then perform the actual linking of corresponding features. Its output is

a consensusXML file containing linked groups of corresponding features across

the different experiments.

• Since the overall intensities can vary a lot between different measurements (for

example, because the amount of injected analytes was different), we apply the

ConsensusMapNormalizer in Community Nodes OpenMS Map Alignment as a last pro-

cessing step. Configure its parameters with setting algorithm_type to median.

It will then normalize the maps in such a way that the median intensity of all

input maps is equal.

• Finally, we export the resulting normalized consensusXML file to a csv format

using TextExporter. Connect its out port to a new Output Folder node.

Note: You can specify the desired column separation character in the

parameter settings (by default, it is set to “ ” (a space)). The output file

of TextExporter can also be opened with external tools, e.g., Microsoft

Excel, for downstream statistical analyses.
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3.4.1 Basic data analysis in KNIME

For downstream analysis of the quantification results within the KNIME environment,

you can use the ConsensusTextReader node in Community Nodes OpenMS Conversion in-

stead of the Output Folder node to convert the output into a KNIME table (indicated

by a triangle as output port). After running the node you can view the KNIME table

by right-clicking on the ConsensusTextReader and selecting Consensus Table . Every row

in this table corresponds to a so-called consensus feature, i.e., a peptide signal quan-

tified across several runs. The first couple of columns describe the consensus feature

as a whole (average RT and m/z across the maps, charge, etc.). The remaining columns

describe the exact positions and intensities of the quantified features separately for

all input samples (e.g., intensity_0 is the intensity of the feature in the first input file).

The last 11 columns contain information on peptide identification.

Figure 17: Simple KNIME data analysis example for LFQ.

• Now, let’s say we want to plot the log intensity distributions of the human spike-

in peptides for all input files. In addition, we will plot the intensity distributions

of the background peptides.

• As shown in Fig. 17, add a Row Splitternode ( Data Manipulation Row Filter ) after

ConsensusTextReader. Double-click it to configure. The human spike-in peptides

have accessions starting with “hum”. Thus, set the column to apply the test to:

accessions, select pattern matching as matching criterion, enter hum* into the

corresponding text field, and check the contains wild cards box. Press OK and

execute the node.

• Row Splitter produces two output tables: the first one contains all rows from

the input table matching the filter criterion, and the second table contains all

other rows. You can inspect the tables by right-clicking and selecting Filtered

and Filtered Out. The former table should now only contain peptides with a
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human accession, whereas the latter should contain all remaining peptides (in-

cluding unidentified ones).

• Now, since we only want to plot intensities, we can add a Column Filter node
Data Manipulation Column Filter , connect its input port to the Filtered output

port of the Row Filter, and open its configuration dialog. We could either man-

ually select the columns we want to keep, or, more elegantly, selectWildcard/Regex

Selection and enter intensity_? as the pattern. KNIME will interactively show

you which columns your pattern applies to while you’re typing.

• Since we want to plot log intensities, we will now compute the log of all intensity

values in our table. The easiest way to do this in KNIME is a small piece of R code.

Add an R Snippet node R after Column Filter and double-click to configure.

In the R Script text editor, enter the following code:

x <- knime.in # store copy of input table in x
x[x == 0] <- NA # replace all zeros by NA (= missing value)
x <- log10(x) # compute log of all values
knime.out <- x # write result to output table

• Now we are ready to plot! Add a Box Plot (local) node Views - Swing (local) after

the R Snippet node, execute it, and open its view. If everything went well, you

should see a significant fold change of your human peptide intensities across

the three runs.

• In order to verify that the concentration of background peptides is constant in

all three runs, you can just copy and paste the three nodes after Row Splitter

and connect the duplicated Column Filter to the second output port (Filtered

Out) of Row Splitter, as shown in Fig. 17. Execute and open the view of your

second Box Plot.

• That’s it! You have constructed an entire identification and label-free quantifi-

cation workflow including a simple data analysis using KNIME!

3.5 Identification &Quantification of the iPRG2015 data with sub-

sequent MSstats analysis

Advanced downstream data analysis of quantitative mass spectrometry-based pro-

teomics data can be performed using MSstats [11]. This tool can be combined with

an OpenMS preprocessing pipeline (e.g. in KNIME). The OpenMS experimental de-

sign is used to present the data in an MSstats-conformant way for the analysis. Here,

we give an example how to utilize these resources when working with quantitative
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label-free data. We describe how to use OpenMS and MSstats for the analysis of the

ABRF iPRG2015 dataset [12].

Note: Reanalysing the full dataset from scratch would take too long. In this

tutorial session, we will focus on just the conversion process and the down-

stream analysis.

3.5.1 Excursion MSstats

The R package MSstats can be used for statistical relative quantification of proteins

and peptides in mass spectrometry-based proteomics. Supported are label-free as

well as labeled experiments in combination with data-dependent, targeted and data-

independent acquisition. Inputs can be identified and quantified entities (peptides

or proteins) and the output is a list of differentially abundant entities, or summaries

of their relative abundance. It depends on accurate feature detection, identification

and quantification which can be performed e.g. by an OpenMS workflow.

In general MSstats can be used for data processing & visualization, as well as sta-

tistical modeling & inference. Please see [11] and http://msstats.org for further

information.

3.5.2 Dataset

The iPRG (Proteome Informatics Research Group) dataset from the study in 2015, as

described in [12], aims at evaluating the effect of statistical analysis software on the

accuracy of results on a proteomics label-free quantification experiment. The data is

based on four artificial samples with known composition (background: 200 ng S. cere-

visiae). These were spiked with different quantities of individual digested proteins,

whose identifiers were masked for the competition as yeast proteins in the provided

database (see Table 1).

Table 1: Samples (background: 200 ng S. cerevisiae) with spiked-in proteins in differ-
ent quantities [fmols].

Samples

Name Origin Molecular Weight 1 2 3 4

A Ovalbumin Egg White 45 KD 65 55 15 2
B Myoglobin Equine Heart 17 KD 55 15 2 65
C Phosphorylase b Rabbit Muscle 97 KD 15 2 65 55
D Beta-Glactosidase Escherichia Coli 116 KD 2 65 55 15
E Bovine Serum Albumin Bovine Serum 66 KD 11 0.6 10 500
F Carbonic Anhydrase Bovine Erythrocytes 29 KD 10 500 11 0.6
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3.5.3 Identification and Quantification

Figure 18: KNIME data analysis of iPRG LFQ data.

The iPRG LFQ workflow (Fig. 18) consists of an identification and a quantification part.

The identification is achieved by searching the computationally calculated MS2 spec-

tra from a sequence database (Input File node, here with the given database from

iPRG: Example_Data iPRG2015 database iPRG2015_target_decoy_nocontaminants.fasta)

against the MS2 from the original data (Input Files node with all mzMLs following

Example_Data iPRG2015 datasets JD_06232014_sample*.mzML) using the OMSSAAdapter.

Note: If you want to reproduce the results at home, you have to download

the iPRG data in mzML format and perform Peakpicking on it. Or convert

and pick the raw data with msconvert.

Afterwards the results are scored using the FalseDiscoveryRate node and filtered to

obtain only unique peptides (IDFilter) since MSstats does not support shared pep-

tides, yet. The quantification is achieved by the FeatureFinderCentroided, which per-

forms the feature detection on the samples (maps). In the end the quantification re-

sults are combined with the filtered identification results (IDMapper). In addition, a lin-

ear retention time alignment is performed (MapAlignerPoseClustering), followed by

the feature linking process (FeatureLinkerUnlabledQT). The ConsensusMapNormalizer

is used to normalize the intensities via robust regression over a set of maps and the

IDConflictResolver assures that only one identification (best score) is associated

with a feature. The output of this workflow is a consensusXML file, which can now

be converted using the MSstatsConverter (see section 3.5.5).

3.5.4 Experimental design

As mentioned before, the downstream analysis can be performed using MSstats. In

this case an experimental design has to be specified for the OpenMS workflow. The
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structure of the experimental design used in OpenMS in case of the iPRG dataset is

specified in Table 2. An explanation of the variables can be found in Table 3.

Table 2: OpenMS Experimental design for the iPRG2015 dataset.

Fraction_Group Fraction Spectra_Filepath Label Sample
1 1 Sample1-A 1 1
2 1 Sample1-B 1 2
3 1 Sample1-C 1 3
4 1 Sample2-A 1 4
5 1 Sample2-B 1 5
6 1 Sample2-C 1 6
7 1 Sample3-A 1 7
8 1 Sample3-B 1 8
9 1 Sample3-C 1 9
10 1 Sample4-A 1 10
11 1 Sample4-B 1 11
12 1 Sample4-C 1 12

Sample MSstats_Condition MSstats_BioReplicate
1 1 1
2 1 2
3 1 3
4 2 4
5 2 5
6 2 6
7 3 7
8 3 8
9 3 9
10 4 10
11 4 11
12 4 12

Table 3: Explanation of the column of the experimental design table

variables value

Fraction_Group Index used to group fractions and source files.
Fraction 1st, 2nd, .., fraction. Note: All runs must have the same number of frac-

tions.
Spectra_Filepath Path to mzML files
Label label-free: always 1

TMT6Plex: 1...6
SILAC with light and heavy: 1..2

Sample Index of sample measured in the specified label X, in fraction Y of frac-
tion group Z.

Conditions Further specification of different conditions (e.g. MSstats_Condition;
MSstats_BioReplicate)

The conditions are highly dependent on the type of experiment and on which kind of
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analysis you want to perform. For the MSstats analysis the information which sample

belongs to which condition and if there are biological replicates are mandatory. This

can be specified in further condition columns as explained in Table 3. For a detailed

description of the MSstats-specific terminology, see their documentation e.g. in the

R vignette.

3.5.5 Conversion and downstream analysis

Conversion of the OpenMS-internal consensusXML format (which is an aggregation

of quantified and possibly identified features across several MS-maps) to a table (in

MSstats-conformant CSV format) is very easy. First, create a new KNIME workflow.

Then, run the MSstatsConverter node with a consensusXML and the manually created

(e.g. in Excel) experimental design as inputs (loaded via Input File nodes). The first

input can be found in

Example_Data iPRG2015 openmsLFQResults iPRG_lfq.consensusXML

This file was generated by using the Workflows openmsLFQ_iPRG2015.knwf work-

flow (seen in Fig. 18). The second input is specified in

Example_Data iPRG2015 experimental_design.tsv.

Adjust the parameters in the config dialog of the converter to match the given exper-

imental design file and to use a simple summing for peptides that elute in multiple

features (with the same charge state, i.e. m/z value).

parameter value

msstats_bioreplicate MSstats_Bioreplicate

msstats_condition MSstats_Condition

labeled_reference_peptides false

retention_time_summarization_method (advanced) sum

The downstream analysis of the peptide ions with MSstats is performed in several

steps. These steps are reflected by several KNIME R nodes, which consume the out-

put of MSstatsConverter. The outline of the workflow is shown in Figure 19.

We load the file resulting from MSStatsConverter either by saving it with an Output

File node and reloading it with the File Reader. Or for advanced users, you can use a

URI Port to Variable node and use the variable in the File Reader config dialog (V

button - located on the right of the ”Browse...” button) to read from the temporary

file.
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Figure 19: MSstats analysis using KNIME. The individual steps (Preprocessing, Group
Comparisons, Result Data Renaming, and Export) are split among several consecutive
nodes.

Preprocessing

The first node (Table to R) loads MSstats as well as the data from the previous KNIME

node and performs a preprocessing step on the input data. The inline R script (that

needs to be pasted into the config dialog of the node)

library(MSstats)
data <- knime.in
quant <- OpenMStoMSstatsFormat(data, removeProtein_with1Feature = FALSE)

allows further preparation of the data produced by MSstatsConverter before the ac-

tual analysis is performed. In this example, the lines with proteins, which were iden-

tified with only one feature, were retained. Alternatively they could be removed.

In the same node, most importantly, the following line:

processed.quant <- dataProcess(quant, censoredInt = 'NA')

transforms the data into a format that is understood by MSstats. Here, dataProcess

is one of the most important functions that the R package provides. The function

performs the following steps:

1. Logarithm transformation of the intensities

2. Normalization

3. Feature selection

4. Missing value imputation

5. Run-level summarization

In this example, we just state that missing intensity values are represented by the

’NA’ string.
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Group Comparison

The goal of the analysis is the determination of differentially-expressed proteins among

the different conditions C1-C4. We can specify the comparisons that we want to make

in a comparison matrix. For this, let’s consider the following example:
−1 1 0 0

−1 0 1 0

−1 0 0 1

0 −1 0 1

0 0 −1 1

 (3.1)

This matrix has the following properties:

• The number of rows equals the number of comparisons that we want to per-

form, the number of columns equals the number of conditions (here, column 1

refers to C1, column 2 to C2 and so forth).

• The entries of each row consist of exactly one 1 and one -1, the others must be

0.

• The condition with the entry 1 constitutes the enumerator of the log2 fold-

change. The one with entry -1 denotes the denominator. Hence, the first row

states that we want calculate log C2

C1
.

We can generate such a matrix in R using the following code snippet in (for example)

a new R to R node that takes over the R workspace from the previous node with all

its variables:

comparison1<-matrix(c(-1,1,0,0),nrow=1)
comparison2<-matrix(c(-1,0,1,0),nrow=1)
comparison3<-matrix(c(-1,0,0,1),nrow=1)
comparison4<-matrix(c(0,-1,1,0),nrow=1)
comparison5<-matrix(c(0,-1,0,1),nrow=1)
comparison6<-matrix(c(0,0,-1,1),nrow=1)
comparison <- rbind(comparison1, comparison2, comparison3, comparison4,

comparison5, comparison6)↪→
row.names(comparison)<-c(”C2-C1”,”C3-C1”,”C4-C1”,”C3-C2”,”C4-C2”,”C4-C3”)

Here, we assemble each row in turn, concatenate them at the end, and provide row

names for labeling the rows with the respective condition.

In MSstats, the group comparison is then performed with the following line:

test.MSstats <- groupComparison(contrast.matrix=comparison, data=processed.quant)
}

No more parameters need to be set for performing the comparison.
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Result Processing

In a next R to R node, the results are being processed. The following code snippet:

test.MSstats.cr <- test.MSstats$ComparisonResult

# Rename spiked ins to A,B,C....
pnames <- c(”A”, ”B”, ”C”, ”D”, ”E”, ”F”)
names(pnames) <- c(
”sp|P44015|VAC2_YEAST”,
”sp|P55752|ISCB_YEAST”,
”sp|P44374|SFG2_YEAST”,
”sp|P44983|UTR6_YEAST”,
”sp|P44683|PGA4_YEAST”,
”sp|P55249|ZRT4_YEAST”
)

test.MSstats.cr.spikedins <- bind_rows(
test.MSstats.cr[grep(”P44015”, test.MSstats.cr$Protein),],
test.MSstats.cr[grep(”P55752”, test.MSstats.cr$Protein),],
test.MSstats.cr[grep(”P44374”, test.MSstats.cr$Protein),],
test.MSstats.cr[grep(”P44683”, test.MSstats.cr$Protein),],
test.MSstats.cr[grep(”P44983”, test.MSstats.cr$Protein),],
test.MSstats.cr[grep(”P55249”, test.MSstats.cr$Protein),]
)
# Rename Proteins
test.MSstats.cr.spikedins$Protein <- sapply(test.MSstats.cr.spikedins$Protein,

function(x) {pnames[as.character(x)]})↪→
test.MSstats.cr$Protein <- sapply(test.MSstats.cr$Protein, function(x) {

x <- as.character(x)

if (x %in% names(pnames)) {

return(pnames[as.character(x)])
} else {
return(””)
}
})

will rename the spiked-in proteins to A,B,C,D,E, and F and remove the names of other

proteins, which will be beneficial for the subsequent visualization, as for example

performed in Figure 20.

Export

The last four nodes, each connected and making use of the same workspace from

the last node, will export the results to a textual representation and volcano plots

for further inspection. Firstly, quality control can be performed with the following

snippet:

qcplot <- dataProcessPlots(processed.quant, type=”QCplot”,
ylimDown=0,
which.Protein = 'allonly',
width=7, height=7, address=F)

The code for this snippet is embedded in the first output node of the workflow. The

resulting boxplots show the log2 intensity distribution across the MS runs.

The second node is an R View (Workspace) node that returns a Volcano plot which
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displays differentially expressed proteins between conditions C2 vs. C1. The plot is

described in more detail in the following Result section. This is how you generate it:

groupComparisonPlots(data=test.MSstats.cr, type=”VolcanoPlot”,
width=12, height=12,dot.size = 2,ylimUp = 7,
which.Comparison = ”C2-C1”,
address=F)

The last two nodes export the MSstats results as a KNIME table for potential further

analysis or for writing it to a (e.g. csv) file. Note that you could also write output

inside the Rscript if you are familiar with it. Use the following for an R to Table node

exporting all results:

knime.out <- test.MSstats.cr

And this for an R to Table node exporting only results for the spike-ins:

knime.out <- test.MSstats.cr.spikedins

3.5.6 Result

An excerpt of the main result of the group comparison can be seen in Figure 20.

Figure 20: Volcano plots produced by the Group Comparison in MSstats The dotted
line indicates an adjusted p-value threshold

The Volcano plots show differently expressed spiked-in proteins. In the left plot,

which shows the fold-change C2-C1, we can see the proteins D and F (sp|P44983|UTR6_YEAST

and sp|P55249|ZRT4_YEAST) are significantly over-expressed in C2, while the proteins
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B,C, and E (sp|P55752|ISCB_YEAST, sp|P55752|ISCB_YEAST, and sp|P44683|PGA4_YEAST)

are under-expressed. In the right plot, which shows the fold-change ratio of C3 vs. C2,

we can see the proteins E and C (sp|P44683|PGA4_YEAST and sp|P44374|SFG2_YEAST)

over-expressed and the proteins A and F (sp|P44015|VAC2_YEASTand sp|P55249|ZRT4_YEAST)

under-expressed. The plots also show further differentially-expressed proteins, which

do not belong to the spiked-in proteins.

The full analysis workflow can be found under

Workflows MSstats_statPostProcessing_iPRG2015.knwf.
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4 Protein Inference

In the last chapter, we have successfully quantified peptides in a label-free experi-

ment. As a next step, we will further extend this label-free quantification workflow

by protein inference and protein quantification capabilities. This workflow uses some

of the more advanced concepts of KNIME, as well as a few more nodes containing R

code. For these reasons, you will not have to build it yourself. Instead, we have al-

ready prepared and copied this workflow to the USB sticks. Just import Workflows

> labelfree_with_protein_quantification.knwf into KNIME via the menu entry File
Import KNIME workflow Select file and double-click the imported workflow in order to

open it.

Before you can execute the workflow, you again have to correct the locations of

the files in the Input Files nodes (don’t forget the one for the FASTA database inside

the “ID” meta node). Try and run your workflow by executing all nodes at once.

4.1 Extending the LFQ workflow by protein inference and quan-

tification

We have made the following changes compared to the original label-free quantifica-

tion workflow from the last chapter:

• First, we have added a ProteinQuantifier node and connected its input port to

the output port of ConsensusMapNormalizer.

• This already enables protein quantification. ProteinQuantifier quantifies pep-

tides by summarizing over all observed charge states and proteins by summariz-

ing over their quantified peptides. It stores two output files, one for the quan-

tified peptides and one for the proteins.

• In this example, we consider only the protein quantification output file, which

is written to the first output port of ProteinQuantifier

• Because there is no dedicated node in KNIME to read back the ProteinQuantifier

output file format into a KNIME table, we have to use a workaround. Here, we

have added an additional URI Port to Variable node which converts the name

of the output file to a so-called “flow variable” in KNIME. This variable is passed

on to the next node CSV Reader, where it is used to specify the name of the input

file to be read. If you double-click on CSV Reader, you will see that the text field,

where you usually enter the location of the CSV file to be read, is greyed out.

Instead, the flow variable is used to specify the location, as indicated by the

small green button with the “v=?” label on the right.

49



• The table containing the ProteinQuantifier results is filtered one more time in

order to remove decoy proteins. You can have a look at the final list of quanti-

fied protein groups by right-clicking the Row Filter and selecting Filtered .

• By default, i.e., when the second input port protein_groups is not used, Protein-

Quantifier quantifies proteins using only the unique peptides, which usually re-

sults in rather low numbers of quantified proteins.

• In this example, however, we have performed protein inference using Fido and

used the resulting protein grouping information to also quantify indistinguish-

able proteins. In fact, we also used a greedy method in FidoAdapter (parame-

ter greedy_group_resolution) to uniquely assign the peptides of a group to the

most probable protein(s) in the respective group. This boosts the number of

quantifications but slightly raises the chances to yield distorted protein quanti-

ties.

• As a prerequisite for using FidoAdapter, we have added an IDPosteriorErrorProbability

node within the IDmeta node, between the XTandemAdapter (note the replace-

ment of OMSSA because of ill-calibrated scores) and PeptideIndexer. We have

set its parameter prob_correct to true, so it computes posterior probabilities in-

stead of posterior error probabilities (1 - PEP). These are stored in the resulting

idXML file and later on used by the Fido algorithm. Also note that we excluded

FDR filtering from the standard meta node. Harsh filtering before inference

impacts the calibration of the results. Since we filter peptides before quantifi-

cation though, no potentially random peptides will be included in the results

anyway.

• Next, we have added a third outgoing connection to our ID meta node and con-

nected it to the second input port of ZipLoopEnd. Thus, KNIME will wait until

all input files have been processed by the loop and then pass on the resulting

list of idXML files to the subsequent IDMerger node, which merges all identifi-

cations from all idXML files into a single idXML file. This is done to get a unique

assignment of peptides to proteins over all samples.

• Instead of the meta node Protein inference with FidoAdapter, we could have

just used a FidoAdapter node ( Community Nodes OpenMS ID Processing ). However,

the meta node contains an additional subworkflow which, besides calling FidoAdapter,

performs a statistical validation (e.g. (pseudo) receiver operating curves; ROCs)

of the protein inference results using some of the more advanced KNIME and R

nodes. The meta node also shows how to use MzTabExporter and MzTabReader.
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4.2 Statistical validation of protein inference results

In the following, we will explain the subworkflow contained in the Protein inference

with FidoAdapter meta node.

4.2.1 Data preparation

For downstream analysis on the protein ID level in KNIME, it is again necessary to

convert the idXML-file-format result generated from FidoAdapter into a KNIME table.

• We use the MzTabExporter to convert the inference results from FidoAdapter to

a human readable, tab-separated mzTab file. mzTab contains multiple sections,

that are all exported by default, if applicable. This file, with its different sections

can again be read by the MzTabReader that produces one output in KNIME table

format (triangle ports) for each section. Some ports might be empty if a section

did not exist. Of course, we continue by connecting the downstream nodes with

the protein section output (second port).

• Since the protein section contains single proteins as well as protein groups, we

filter them for single proteins with the standard Row Filter.

4.2.2 ROC curve of protein ID

ROC Curves (Receiver Operating Characteristic curves) are graphical plots that visu-

alize sensitivity (true-positive rate) against fall-out (false positive rate). They are of-

ten used to judge the quality of a discrimination method like e.g., peptide or pro-

tein identification engines. ROC Curve already provides the functionality of drawing

ROC curves for binary classification problems. When configuring this node, select the

opt_global_target_decoy column as the class (i.e. target outcome) column. We want

to find out, how good our inferred protein probability discriminates between them,

therefore add

best_search_engine_score[1] (the inference engine score is treated like a peptide

search engine score) to the list of ”Columns containing positive class probabilities”.

View the plot by right-clicking and selecting View: ROC Curves . A perfect classifier has

an area under the curve (AUC) of 1.0 and its curve touches the upper left of the plot.

However, in protein or peptide identification, the ground-truth (i.e., which target

identifications are true, which are false) is usually not known. Instead, so called pseudo-

ROC Curves are regularly used to plot the number of target proteins against the false

discovery rate (FDR) or its protein-centric counterpart, the q-value. The FDR is ap-

proximated by using the target-decoy estimate in order to distinguish true IDs from

false IDs by separating target IDs from decoy IDs.
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4.2.3 Posterior probability and FDR of protein IDs

ROC curves illustrate the discriminative capability of the scores of IDs. In the case

of protein identifications, Fido produces the posterior probability of each protein as

the output score. However, a perfect score should not only be highly discriminative

(distinguishing true from false IDs), it should also be “calibrated” (for probability in-

dicating that all IDs with reported posterior probability scores of 95% should roughly

have a 5% probability of being false. This implies that the estimated number of false

positives can be computed as the sum of posterior error probabilities ( = 1 - poste-

rior probability) in a set, divided by the number of proteins in the set. Thereby a

posterior-probability-estimated FDR is computed which can be compared to the ac-

tual target-decoy FDR. We can plot calibration curves to help us visualize the quality of

the score (when the score is interpreted as a probability as Fido does), by comparing

how similar the target-decoy estimated FDR and the posterior probability estimated

FDR are. Good results should show a close correspondence between these two mea-

surements, although a non-correspondence does not necessarily indicate wrong re-

sults.

The calculation is done by using a simple R script in R snippet. First, the target

decoy protein FDR is computed as the proportion of decoy proteins among all signifi-

cant protein IDs. Then posterior probabilistic-driven FDR is estimated by the average

of the posterior error probability of all significant protein IDs. Since FDR is the prop-

erty for a group of protein IDs, we can also calculate a local property for each protein:

the q-value of a certain protein ID is the minimum FDR of any groups of protein IDs

that contain this protein ID. We plot the protein ID results versus two different kinds

of FDR estimates in R View(Table) (see Fig. 22).

Figure 21: The workflow of statistical analysis of protein inference results
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Figure 22: the pseudo-ROC Curve of protein IDs. The accumulated number of protein
IDs is plotted on two kinds of scales: target-decoy protein FDR and Fido posterior
probability estimated FDR. The largest value of posterior probability estimated FDR
is already smaller than 0.04, this is because the posterior probability output from Fido
is generally very high.
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5 Isobaric analysis

In the last chapters, we identified and quantified peptides in a label-free experiment.

In this section, we would like to introduce a possible workflow for the analysis of

isobaric data.

5.1 Isobaric analysis workflow

Let’s have a look at the workflow (see Fig 23)

Figure 23: Workflow for the analysis of isobaric data

The full analysis workflow can be found here:

Workflows

Identification_quantification_isobaric_inference_epifany_MSstatsTMT.

The workflow has four input nodes. The first for the experimental design to allow

for MSstatsTMT compatible export (MSstatsConverter). The second for the .mzML

files with the centroided spectra from the isobaric labeling experiment and the third

one for the .fasta database used for identification. The last one allows to specify an

output path for the plots generated by the R View, which runs MSstatsTMT (I). The

quantification (A) is performed using the IsobaricAnalzyer. The tool is able to ex-

tract and normalize quantitative information from TMT and iTRAQ data. The values

can be assessed from centroided MS2 or MS3 spectra (if available). Isotope correction

is performed based on the specified correction matrix (as provided by the manufac-

turer). The identification (C) is applied as known from the previous chapters by using

database search and a target-decoy database.

To reduce the complexity of the data for later inference the q-value estimation and

FDR filtering is performed on PSM level for each file individually (B). Afterwards the
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identification (PSM) and quantiative information is combined using the IDMapper. Af-

ter the processing of all available files, the intermediate results are aggregated (FileMerger

- D). All PSM results are used for score estimation and protein inference (Epifany) (E).

For detailed information about protein inference please see Chaper 4. Then, decoys

are removed and the inference results are filtered via a protein group FDR. Peptide

level results can be exported via MzTabExporter (F), protein level results can be ob-

tained via the ProteinQuantifier (G) or the results can exported (MSstatsConverter -

H) and further processed with the following R pipeline to allow for downstream pro-

cessing using MSstatsTMT.

Please import the workflow from Workflows >

Identification_quantification_isobaric_inference_epifany_MSstatsTMT into KNIME

via the menu entry File Import KNIME workflow Select file and double-click the imported

workflow in order to open it. Before you can execute the workflow, you have to cor-

rect the locations of the files in the Input Files nodes (don’t forget the one for the

FASTA database inside the “ID” meta node). Try and run your workflow by executing

all nodes at once.

5.2 Excursion MSstatsTMT

The R package MSstatsTMT can be used for protein significance analysis in shotgun

mass spectrometry-based proteomic experiments with tandem mass tag (TMT) la-

beling. MSstatsTMT provides functionality for two types of analysis & their visualiza-

tion: Protein summarization based on peptide quantification and Model-based group

comparison to detect significant changes in abundance. It depends on accurate fea-

ture detection, identification and quantification which can be performed e.g. by an

OpenMS workflow.

In general MSstatsTMT can be used for data processing & visualization, as well as sta-

tistical modeling. Please see [13] and http://msstats.org/msstatstmt/ for further

information.

There is also a very helpful online lecture and tutorial for MSstatsTMT from the May

Institute Workshop 2020. Please see https://youtu.be/3CDnrQxGLbA

5.3 Dataset & Experimental Design

We are using the MSV000084264 ground truth dataset, which consits of TMT10plex

controlled mixes of different concentrated UPS1 peptides spiked into SILAC HeLa
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peptides measured in a dilution series https://www.omicsdi.org/dataset/massive/

MSV000084264. Figure 24 shows the experimental design. In this experiment 5 dif-

ferent TMT10plex mixtures – different labeling strategies – were analysed. These

were measured in triplicates represented by the 15 MS runs (3 runs each). The exam-

ple data, database and experimental design to run the workflow can be found here

https://abibuilder.informatik.uni-tuebingen.de/archive/openms/Tutorials/Data/

isobaric_MSV000084264/.

Figure 24: Experimental Design

The experimental design in table format allows for MSstatsTMT compatible export.

The design is represented by two tables. The first one 4 represents the overall struc-

ture of the experiment in terms of samples, fractions, labels and fraction groups. The

second one 5 adds to the first by specifying specific conditions, biological replicates

as well as mixtures and label for each channel. For additional information about the

experimental design please see Table 3 in Chapter 3.5.4.

After running the worklfow the MSstatsConverter will convert the OpenMS output in

addition with the experimental design to a file (.csv) which can be processed by using

MSstatsTMT.

5.3.1 MSstatsTMT analysis

Here, we depict the analysis by MSstatsTMT using a segment of the isobaric analysis

workflow (Fig. 25 ). The segment is available as Workflows MSstatsTMT.knwf.

There are two input nodes, the first one takes the result (.csv) from the MSstatsConverter
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Table 4: Experimental Design 1

Spectra_Filepath Fraction Label Fraction_Group Sample
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_01.mzML 1 1 1 1
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_01.mzML 1 2 1 2
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_01.mzML 1 3 1 3
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_01.mzML 1 4 1 4
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_01.mzML 1 5 1 5
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_01.mzML 1 6 1 6
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_01.mzML 1 7 1 7
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_01.mzML 1 8 1 8
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_01.mzML 1 9 1 9
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_01.mzML 1 10 1 10
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_02.mzML 1 1 2 11
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_02.mzML 1 2 2 12
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_02.mzML 1 3 2 13
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_02.mzML 1 4 2 14
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_02.mzML 1 5 2 15
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_02.mzML 1 6 2 16
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_02.mzML 1 7 2 17
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_02.mzML 1 8 2 18
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_02.mzML 1 9 2 19
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_02.mzML 1 10 2 20
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_03.mzML 1 1 3 21
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_03.mzML 1 2 3 22
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_03.mzML 1 3 3 23
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_03.mzML 1 4 3 24
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_03.mzML 1 5 3 25
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_03.mzML 1 6 3 26
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_03.mzML 1 7 3 27
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_03.mzML 1 8 3 28
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_03.mzML 1 9 3 29
161117_SILAC_HeLa_UPS1_TMT10_SPS_MS3_Mixture1_03.mzML 1 10 3 30

and the second a path to the directory where the plots generated by MSstatsTMT

should be saved. The R source node loads the required packages, such as dplyr for

data wrangling, MSstatsTMT for analysis and MSstats for plotting. The inputs are fur-

ther processed in the R View node.

Here, the data of the Input File is loaded into R using the flow variable [”URI-0”]:

file <- substr(knime.flow.in[[”URI-0”]], 6, nchar(knime.flow.in[[”URI-0”]]))
MSstatsConverter_OpenMS_out <- read.csv(file)
data <- MSstatsConverter_OpenMS_out

The OpenMStoMSstatsTMTFormat function preprocesses the OpenMS report and

converts it into the required input format for MSstatsTMT, by filtering based on unique

peptides and measurments in each MS run.

processed.data <- OpenMStoMSstatsTMTFormat(data)

Afterwards different normalization steps are performed (global, protein, runs) as

well as data imputation by using the msstats method. In addition peptide level data

is summarized to protein level data.

quant.data <- proteinSummarization(processed.data,
method=”msstats”,
global_norm=TRUE,
reference_norm=TRUE,
MBimpute = TRUE,
maxQuantileforCensored = NULL,
remove_norm_channel = TRUE,
remove_empty_channel = TRUE)
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Table 5: Experimental Design 2

Sample MSstats_Condition MSstats_BioReplicate MSstats_Mixture LabelName
1 Norm Norm 1 126
2 0.667 0.667 1 127N
3 0.125 0.125 1 127C
4 0.5 0.5 1 128N
5 1 1 1 128C
6 0.125 0.125 1 129N
7 0.5 0.5 1 129C
8 1 1 1 130N
9 0.667 0.667 1 130C
10 Norm Norm 1 131
11 Norm Norm 1 126
12 0.667 0.667 1 127N
13 0.125 0.125 1 127C
14 0.5 0.5 1 128N
15 1 1 1 128C
16 0.125 0.125 1 129N
17 0.5 0.5 1 129C
18 1 1 1 130N
19 0.667 0.667 1 130C
20 Norm Norm 1 131
21 Norm Norm 1 126
22 0.667 0.667 1 127N
23 0.125 0.125 1 127C
24 0.5 0.5 1 128N
25 1 1 1 128C
26 0.125 0.125 1 129N
27 0.5 0.5 1 129C
28 1 1 1 130N
29 0.667 0.667 1 130C
30 Norm Norm 1 131

There a lot of different possibilities to configure this method please have a look at

the MSstatsTMT package for additional detailed information http://bioconductor.

org/packages/release/bioc/html/MSstatsTMT.html

The next step is the comparions of the different conditions, here either a pairwise

comparision can be performed or a confusion matrix can be created. The goal is to

detect and compare the UPS peptides spiked in at different concentrations.

# prepare contrast matrix
unique(quant.data$Condition)

comparison<-matrix(c(-1,0,0,1,
0,-1,0,1,
0,0,-1,1,
0,1,-1,0,
1,-1,0,0), nrow=5, byrow = T)

# Set the names of each row
row.names(comparison)<- contrasts <- c(”1-0125”,

”1-05”,
”1-0667”,
”05-0667”,
”0125-05”)

# Set the column names
colnames(comparison)<- c(”0.125”, ”0.5”, ”0.667”, ”1”)

The constructed confusion matrix is used in the groupComparisonTMT function to

test for significant changes in protein abundance across conditions based on a family

of linear mixed-effects models in TMT experiments.
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Figure 25: MSstatsTMT workflow segment

data.res <- groupComparisonTMT(data = quant.data,
contrast.matrix = comparison,
moderated = TRUE, # do moderated t test
adj.method = ”BH”) # multiple comparison adjustment

data.res <- data.res %>% filter(!is.na(Protein))

In the next step the comparison can be plotted using the groupComparisonPlots func-

tion by MSstats

library(MSstats)
groupComparisonPlots(data=data.res.mod, type=”VolcanoPlot”, address=F, which.Comparison =

”0125-05”, sig = 0.05)↪→

Here, we have a example output of the R View, which depicts the significant regulated

UPS proteins in the comparison of 125 to 05 (Fig. 26).

All plots are saved to the in the beginning specified output directory in addition.

5.4 Note

The isobaric analysis does not always has to be performed on protein level, for ex-

ample for phosphoproteomics studies one is usually interested on the peptide level -

in addition inference on peptides with post-translational modification is not straight

forward. Here, we present and additonal workflow on peptide level, which can poten-

tially be adapted and used for such cases. Please see Workflows Identification_quantification_isobaric_MSstatsTMT.
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Figure 26: Volcanoplot of the group comparison regarding 0125 to 05.
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6 Label-free quantification of metabolites

6.1 Introduction

Quantification and identification of chemical compounds are basic tasks in metabolomic

studies. In this tutorial session we construct a UPLC-MS based, label-free quantifica-

tion and identification workflow. Following quantification and identification we then

perform statistical downstream analysis to detect quantification values that differ

significantly between two conditions. This approach can, for example, be used to

detect biomarkers. Here, we use two spike-in conditions of a dilution series (0.5 mg/l

and 10.0 mg/l, male blood background, measured in triplicates) comprising seven iso-

topically labeled compounds. The goal of this tutorial is to detect and quantify these

differential spike-in compounds against the complex background.

6.2 Basics of non-targeted metabolomics data analysis

For the metabolite quantification we choose an approach similar to the one used for

peptides, but this time based on the OpenMS FeatureFinderMetabo method. This fea-

ture finder again collects peak picked data into individual mass traces. The reason

why we need a different feature finder for metabolites lies in the step after trace de-

tection: the aggregation of isotopic traces belonging to the same compound ion into

the same feature. Compared to peptides with their averagine model, small molecules

have very different isotopic distributions. To group small molecule mass traces cor-

rectly, an aggregation model tailored to small molecules is thus needed.

• Create a new workflow called for instance ”Metabolomics”.

• Add an Input Filenode and configure it with one mzML file from the Example_Data

Metabolomics datasets.

• Add a FeatureFinderMetabonode (from Community Nodes OpenMS Quantitation and

connect the first output port of the Input File to the FeatureFinderMetabo.

• For an optimal result adjust the following settings. Please note that some of

these are advanced parameters.

• Connect a Output Folder to the output of the FeatureFinderMetabo (see Fig. 27).

In the following advanced parameters will be highlighted. These parameter can

be altered if the Show advanced parameter field in the specific tool is activated (right

bottom corner - see 2.4.2).
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Figure 27: FeatureFinderMetabo workflow.

parameter value

algorithm→ common→ chrom_fwhm 8.0

algorithm→mtd→ trace_termination_criterion sample_rate

algorithm→mtd→min_trace_length 3.0

algorithm→mtd→max_trace_length 600.0

algorithm→ epd→width_filtering off

algorithm→ ffm→ report_convex_hulls true

The parameters change the behavior of FeatureFinderMetabo as follows:

• chrom_fwhm: The expected chromatographic peak width in seconds.

• trace_termination_criterion: In the first stage FeatureFinderMetaboassembles

mass traces with a pre-defined mass accuracy. If this parameter is set to ’outlier’,

the extension of a mass trace is stopped after a predefined number of consecu-

tive outliers is found. If this parameter is set to ’sample_rate’, the extension of

a mass trace is stopped once the ratio of collected peaks versus visited spectra

falls below the ratio given by min_sample_rate.

• min_trace_length: Minimal length of a mass trace in seconds. Choose a small

value, if you want to identify low-intensity compounds.

• max_trace_length: Maximal length of a mass trace in seconds. Set this param-

eter to -1 to disable the filtering by maximal length.

• width_filtering: FeatureFinderMetabo can remove features with unlikely peak

widths from the results. If activated it will use the interval provided by the

paramters min_fwhm and max_fwhm.

• report_convex_hulls: If set to true, convex hulls including mass traces will be

reported for all identified features. This increases the output size considerably.

The output file .featureXML can be visualized with TOPPView on top of the used

.mzML file - in a so called layer - to look at the identified features.

First start TOPPView and open the example .mzML file (see Fig. 28). Afterwards open

the .featureXML output as new layer (see Fig. 29). The overlay is depicted in Figure 30.

62



The zoom of the .mzML - .featureXML overlay shows the individual mass traces and

the assembly of those in a feature (see Fig. 31).

Figure 28: Opened .mzML in TOPPView.

The workflow can be extended for multi-file analysis, here an Input Files is to be

used instead of the Input File. In front of the FeatureFinderMetabo a ZipLoopStart

and behind ZipLoopEnd has to be used, since FeatureFinderMetabo will analyis on file

to file bases.

To facilitate the collection of features corresponding to the same compound ion across

different samples, an alignment of the samples’ feature maps along retention time

is often helpful. In addition to local, small-scale elution differences, one can often

see constant retention time shifts across large sections between samples. We can

use linear transformations to correct for these large scale retention differences. This

brings the majority of corresponding compound ions close to each other. Finding the

correct corresponding ions is then faster and easier, as we don’t have to search as far

around individual features.

• After the ZipLoopEndnode add a MapAlignerPoseClusteringnode ( Community Nodes
OpenMS Map Alignment ), set its Output Type to featureXML, and adjust the fol-

lowing settings
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Figure 29: Add new layer in TOPPView.

Figure 30: Overlay of the .mzML layer with the .featureXML layer.
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Figure 31: Zoom of the overlay of the .mzML with the .featureXML layer. Here the
individual isotope traces (blue lines) are assembled into a feature here shown as con-
vex hull (rectangular box).

Figure 32: Mapalignment. The first feature map is used as a reference to which other
maps are aligned. The calculated transformation brings corresponding features into
close retention time proximity. Linking of these features form a so-called consensus
features of a consensus map.
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parameter value

algorithm→max_num_peaks_considered −1

algorithm→ superimposer→mz_pair_max_distance 0.005

algorithm→ superimposer→ num_used_points 10000

algorithm→ pairfinder→ distance_RT→max_difference 20.0

algorithm→ pairfinder→ distance_MZ→max_difference 20.0

algorithm→ pairfinder→ distance_MZ→ unit ppm

MapAlignerPoseClusteringprovides an algorithm to align the retention time scales of

multiple input files, correcting shifts and distortions between them. Retention time

adjustment may be necessary to correct for chromatography differences e.g. before

data from multiple LC-MS runs can be combined (feature linking). The alignment al-

gorithm implemented here is the pose clustering algorithm.

The parameters change the behavior of MapAlignerPoseClustering as follows:

• max_num_peaks_considered: The maximal number of peaks/features to be

considered per map. To use all, set this parameter to -1.

• mz_pair_max_distance: Maximum of m/z deviation of corresponding elements

in different maps. This condition applies to the pairs considered in hashing.

• num_used_points: Maximum number of elements considered in each map (se-

lected by intensity). Use a smaller number to reduce the running time and to

disregard weak signals during alignment.

• distance_RT→max_difference: Features that have a larger RT difference will

never be paired.

• distance_MZ → max_difference: Features that have a larger m/z difference

will never be paired.

• distance_MZ→unit: Unit used for the parameter distance_MZ max_difference,

either Da or ppm.

The next step after retention time correction is the grouping of corresponding

features in multiple samples. In contrast to the previous alignment, we assume no

linear relations of features across samples. The used method is tolerant against local

swaps in elution order.

• After the MapAlignerPoseClustering add a FeatureLinkerUnlabeledQT

( Community Nodes OpenMS Map Alignment ) and adjust the following settings
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Figure 33: Feature linking. Features A and B correspond to the same analyte. The
linking of features between runs (indicated by an arrow) allows comparing feature
intensities.

parameter value

algorithm→ distance_RT→max_difference 40.0

algorithm→ distance_MZ→max_difference 20.0

algorithm→ distance_MZ→ unit ppm

The parameters change the behavior of FeatureLinkerUnlabeledQT as follows

(similar to the parameters we adjusted for MapAlignerPoseClustering):

– distance_RT→max_difference: Features that have a larger RT difference

will never be paired.

– distance_MZ → max_difference: Features that have a larger m/z differ-

ence will never be paired.

– distance_MZ→unit: Unit used for the parameter distance_MZ max_difference,

either Da or ppm.

• After the FeatureLinkerUnlabeledQT add a TextExporter node ( Community Nodes
OpenMS File Handling ).

• Add an Output Folder node and configure it with an output directory where you

want to store the resulting files.

• Run the pipeline and inspect the output.
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Figure 34: Label-free quantification workflow for metabolites

You should find a single, tab-separated file containing the information on where

metabolites were found and with which intensities. You can also add Output Folder

nodes at different stages of the workflow and inspect the intermediate results (e.g.,

identified metabolite features for each input map). The complete workflow can be

seen in Figure 34. In the following section we will try to identify those metabolites.

The FeatureLinkerUnlabeledQT output can be visualized in ToppView on top of the

input and output of the FeatureFinderMetabo (see Fig 35).

Figure 35: Visualization of .consensusXML output over the .mzML and .featureXML
’layer’.

6.3 Basic metabolite identification

At the current state we found several metabolites in the individual maps but so far

don’t know what they are. To identify metabolites OpenMS provides multiple tools,

including search by mass: the AccurateMassSearch node searches observed masses
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against the Human Metabolome Database (HMDB)[14, 15, 16]. We start with the

workflow from the previous section (see Figure 34).

• Add a FileConverter node ( Community Nodes OpenMS File Handling ) and connect

the output of the FeatureLinkerUnlabeledQT to the incoming port.

• Open the Configure dialog of the FileConverter and select the tab ”Output-

Types”. In the drop down list for FileConverter.1.out select ”featureXML”.

• Add an AccurateMassSearch node ( Community Nodes OpenMS Utilities ) and con-

nect the output of the FileConverter to the first port of the AccurateMassSearch.

• Add four Input File nodes and configure them with the following files

– Example_Data Metabolomics databases PositiveAdducts.tsv

This file specifies the list of adducts that are considered in the positive

mode. Each line contains the formula and charge of an adduct separated

by a semicolon (e.g. M+H;1+). The mass of the adduct is calculated auto-

matically.

– Example_Data Metabolomics databases NegativeAdducts.tsv

This file specifies the list of adducts that are considered in the negative

mode analogous to the positive mode.

– Example_Data Metabolomics databases HMDBMappingFile.tsv

This file contains information from a metabolite database in this case from

HMDB. It has three (or more) tab-separated columns: mass, formula, and

identifier(s). This allows for an efficient search by mass.

– Example_Data Metabolomics databases HMDB2StructMapping.tsv

This file contains additional information about the identifiers in the map-

ping file. It has four tab-separated columns that contain the identifier,

name, SMILES, and INCHI. These will be included in the result file. The iden-

tifiers in this file must match the identifiers in the HMDBMappingFile.tsv.

• In the same order as they are given above connect them to the remaining input

ports of the AccurateMassSearch node.

• Add an Output Folder node and connect the first output port of the

AccurateMassSearch node to the Output Folder.

The result of the AccurateMassSearch node is in the mzTab format [17] so you can

easily open it in a text editor or import it into Excel or KNIME, which we will do in the

next section. The complete workflow from this section is shown in Figure 36.
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Figure 36: Label-free quantification and identification workflow for metabolites

6.3.1 Convert your data into a KNIME table

The result from the TextExporternode as well as the result from the AccurateMassSearch

node are files while standard KNIME nodes display and process only KNIME tables. To

convert these files into KNIME tables we need two different nodes. For the AccurateMassSearch

results we use the MzTabReadernode ( Community Nodes OpenMS Conversion mzTab ) and

itsSmallMolecule Sectionport. For the result of the TextExporterwe use the ConsensusTextReader

( Community Nodes OpenMS Conversion ).

When executed, both nodes will import the OpenMS files and provide access to

the data as KNIME tables. The retention time values are exported as a list using

the MzTabReader based on the current PSI-Standard. This has to be parsed using the

SplitCollectionColumn, which outputs a ”Split Value 1” based on the first entry in the

rention time list, which has to be renamed to retention time using the ColumnRename.

You can now combine both tables using the Joinernode ( Manipulation Column Split & Combine )

and configure it to match the m/z and retention time values of the respective tables.

The full workflow is shown in Figure 37.

6.3.2 Adduct grouping

Metabolites commonly co-elute as ions with different adducts (e.g., glutathione+H,

glutathione+Na) or with charge-neutral modifications (e.g., water loss). Grouping

such related ions allows to leverage information across features. For example, a low-

intensity, single trace feature could still be assigned a charge and adduct due to a
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Figure 37: Label-free quantification and identification workflow for metabolites that
loads the results into KNIME and joins the tables.

matching high-quality feature. Such information can then be used by several OpenMS

tools, such as AccurateMassSearch, for example to narrow down candidates for iden-

tification.

For this grouping task, we provide the MetaboliteAdductDecharger node. Its method

explores the combinatorial space of all adduct combinations in a charge range for op-

timal explanations. Using defined adduct probabilities, it assigns co-eluting features

having suitable mass shifts and charges those adduct combinations which maximize

overall ion probabilities.

The tool works natively with featureXML data, allowing the use of reported convex

hulls. On such a single-sample level, co-elution settings can be chosen more strin-

gently, as ionization-based adducts should not influence the elution time: Instead,

elution differences of related ions should be due to slightly differently estimated

times for their feature centroids.

Alternatively, consensusXML data from feature linking can be converted for use, though

with less chromatographic information. Here, the elution time averaging for features

linked across samples, motivates wider co-elution tolerances.

The two main tool outputs are a consensusXML file with compound groups of related

input ions, and a featureXML containing the input file but annotated with inferred

adduct information and charges.

Options to respect or replace ion charges or adducts allow for example:

• Heuristic but faster, iterative adduct grouping (MetaboliteAdductDecharger

→MetaboliteFeatureDeconvolution→q_try set to “feature”) by chaining mul-

tiple MetaboliteAdductDecharger with growing adduct sets, charge ranges or
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otherwise relaxed tolerances.

• More specific feature linking ( FeatureLinkerUnlabeledQT→ algorithm→ ig-

nore_adduct set to “false”)

Figure 38: Metabolite Adduct Decharger adduct grouping workflow

A modified metabolomics workflow with exemplary MetaboliteAdductDecharger

use and parameters is provided in

Workflows Metabolite_Adduct_Grouping.knwf. Run the workflow, in-

spect tool outputs and compare AccurateMassSearch results with and

without adduct grouping.

Task

6.3.3 Visualizing data

Now that you have your data in KNIME you should try to get a feeling for the capabil-

ities of KNIME.

Check out the Molecule Type Cast node ( Chemistry Translators ) together

with subsequent cheminformatics nodes (e.g. RDKit From Molecule ( Community Nodes
RDKit Converters )) to render the structural formula contained in the re-

sult table.

Task
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Have a look at the Column Filter node to reduce the table to the inter-

esting columns, e.g., only the Ids, chemical formula, and intensities.

Task

Try to compute and visualize the m/z and retention time error of the

different feature elements (from the input maps) of each consensus

feature. Hint: A nicely configured Math Formula (Multi Column) node

should suffice.

Task

6.3.4 Spectral library search

Identifying metabolites using only the accurate mass may lead to ambiguous results.

In practice, additional information (e.g. the retention time) is used to further narrow

down potential candidates. Apart from MS1-based features, tandem mass spectra

(MS2) of metabolites provide additional information. In this part of the tutorial, we

take a look on how metabolite spectra can be identified using a library of previously

identified spectra.

Because these libraries tend to be large we don’t distribute them with OpenMS.

Construct the workflow as shown in Fig. 39. Use the file Example_Data

Metabolomics datasets

Metabolite_ID_SpectraDB_positive.mzML as input for your workflow.

You can use the spectral library from

Example_Data Metabolomics databases MetaboliteSpectralDB.mzML

as second input. The first input file contains tandem spectra that are

identified by the MetaboliteSpectralMatcher. The resulting mzTab file

is read back into a KNIME table The retention time values are exported

as a list based on the current PSI-Standard. This has to be parsed us-

ing the SplitCollectionColumn, which outputs a ”Split Value 1” based

on the first entry in the rention time list, which has to be renamed to

retention time using the ColumnRename before it is stored in an Excel ta-

ble. Make sure that you connect the MzTabReader port corresponding

to the Small Molecule Section to the Excel writer (XLS). Please select

the ”add column headers” option in the Excel writer (XLS)).

Task

Run the workflow and inspect the output.
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Figure 39: Spectral library identification workflow

6.3.5 Manual validation

In metabolomics, matches between tandem spectra and spectral libraries are manu-

ally validated. Several commercial and free online resources exist which help in that

task. Some examples are:

• mzCloud contains only spectra from Thermo Orbitrap instruments. The web-

page requires Microsoft Silverlight which currently does not work in modern

browsers (see https://www.mzcloud.org/DataViewer).

• MassBank North America (MoNA) has spectra from different instruments but

falls short in number of spectra (compared to Metlin and mzCloud) http://mona.

fiehnlab.ucdavis.edu/spectra/display/KNA00122

• METLIN includes 961,829 molecules ranging from lipids, steroids, metabolites,

small peptides, carbohydrates, exogenous drugs and toxicants. In total over

14,000 metabolites.

Here, we will use METLIN to manually validate metabolites.

Check in the .xlsx output from the Excel writer (XLS) if you can find

glutathione. Use the retention time column to find the spectrum in the

mzML file. Here open the file in the Example_Data Metabolomics

datasets

Metabolite_ID_SpectraDB_positive.mzML in TOPPView. The MSMS spec-

trum with the retention time of 67.6 s is used as example. The spectrum

can be selected based on the retention time in the scan view window.

Therefore the MS1 spectrum with the retention time of 66.9 s has to be

double clicked and the MSMS spectra recorded in this time frame will

show up. Select the tandem spectrum of Glutathione, but do not close

TOPPView, yet.

Task
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Figure 40: Tandem spectrum of glutathione. Visualized in TOPPView.

On the METLIN homepage search for Name Glutathione using the Advanced Search

(https://metlin.scripps.edu/landing_page.php?pgcontent=advanced_

search). Note that free registration is required. Which collision energy

(and polarity) gives the best (visual) match to your experimental spec-

trum in TOPPView? Here you can compare the fragmentation patterns

in both spectra shown by the Intensity or relative Intensity, the m/z of

a peak and the distance between peaks. Each distance between two

peaks corresponds to a fragment of elemental composition (e.g., NH2

with the charge of one would have mass of two peaks of 16.023 Th).

Task

6.3.6 De novo identification

Another method for MS2 spectra-based metabolite identification is de novo identifi-

cation. This approach can be used in addition to the other methods (accurate mass

search, spectral library search) or individually if no spectral library is available. In this

part of the tutorial, we discuss how metabolite spectra can be identified using de

novo tools. To this end, the tools SIRIUS and CSI:FingerID ([18, 19, 20]) were inte-

grated in the OpenMS Framework as SiriusAdapter. SIRIUS uses isotope pattern anal-

ysis to detect the molecular formula and further analyses the fragmentation pattern

of a compound using fragmentation trees. CSI:FingerID is a method for searching a

fingerprint of a small molecule (metabolite) in a molecular structure database.

The node SiriusAdapter is able to work in different modes depending on the pro-

vided input.

• Input: mzML - SiriusAdapter will search all MS2 spectra in a map.
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Figure 41: Tandem spectrum of glutathione. Visualized in Metlin. Note that several
fragment spectra from varying collision energies are available.

• Input: mzML, featureXML (FeatureFinderMetabo) - SiriusAdapter can use the

provided feature information to reduce the search space to valid features with

MS2 spectra. Additionally it can use the isotopic trace information.

• Input: mzML, featureXML (FeatureFinderMetabo / MetaboliteAdductDecharger

/ AccurateMassSearch) - SiriusAdapter can use the feature information as men-

tioned above together with feature adduct information from adduct grouping

or previous identification.

By using a mzML and featureXML, SIRIUS gains a lot of additional information by using

the OpenMS tools for preprocessing.

Construct the workflow as shown in Fig. 42.

Use the file Example_Data Metabolomics datasets

Metabolite_DeNovoID.mzML as input for your workflow.

Task

Below we show an example workflow for de novo identification (Fig. 42). Here, the

node FeatureFinderMetabo is used for feature detection to annotate analytes in mz,

rt, intensity and charge. This is followed by adduct grouping, trying to asses pos-

sible adducts based on the feature space using the MetaboliteAdductDecharger. In

addition, the HighResPrecursorMassCorrector can use the newly generated feature

information to map MS2 spectra, which were measured on one of the isotope traces
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to the monoisotopic precursor. This helps with feature mapping and analyte identi-

fication in the SiriusAdapter due to the usage of additional MS2 spectra that belong

to a specific feature.

Figure 42: De novo identification workflow

Run the workflow and inspect the output.

The output consists of two mzTab files and an internal .ms file. One mzTab for SIRIUS

and the other for the CSI:FingerID. These provide information about the chemical for-

mula, adduct and the possible compound structure. The information is referenced to

the spectrum used in the analysis. Additional information can be extracted from the

SiriusAdapter by setting an ”out_workspace_directory”. Here the SIRIUS workspace

will be provided after the calculation has finished. This workspace contains informa-

tion about annotated fragments for each successfully explained compound.

6.4 Downstream data analysis and reporting

In this part of the metabolomics session we take a look at more advanced down-

stream analysis and the use of the statistical programming language R. As laid out

in the introduction we try to detect a set of spike-in compounds against a complex

blood background. As there are many ways to perform this type of analysis we pro-

vide a complete workflow.

Import the workflow from Workflows metabolite_ID.knwf in KNIME:
File Import KNIME Workflow...

Task
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The section below will guide you in your understanding of the different parts of

the workflow. Once you understood the workflow you should play around and be

creative. Maybe create a novel visualization in KNIME or R? Do some more elaborate

statistical analysis? Note that some basic R knowledge is required to fully understand

the processing in R Snippet nodes.

6.4.1 Signal processing and data preparation for identification

This part is analogous to what you did for the simple metabolomics pipeline.

6.4.2 Data preparation for quantification

The first part is identical to what you did for the simple metabolomics pipeline. Addi-

tionally, we convert zero intensities into NA values and remove all rows that contain

at least one NA value from the analysis. We do this using a very simple R Snippet and

subsequent Missing Value filter node.

Inspect the R Snippet by double-clicking on it. The KNIME table that

is passed to an R Snippet node is available in R as a data.frame named

knime.in. The result of this node will be read from the data.frame knime.out

after the script finishes. Try to understand and evaluate parts of the

script (Eval Selection). In this dialog you can also print intermediary re-

sults using for example the R command head(knime.in) or cat(knime.in)

to the Console pane.

Task

6.4.3 Statistical analysis

After we linked features across all maps, we want to identify features that are sig-

nificantly deregulated between the two conditions. We will first scale and normalize

the data, then perform a t-test, and finally correct the obtained p-values for multiple

testing using Benjamini-Hochberg. All of these steps will be carried out in individual

R Snippet nodes.

• Double-click on the first R Snippet node labeled ”log scaling” to open the R

Snippet dialog. In the middle you will see a short R script that performs the

log scaling. To perform the log scaling we use a so-called regular expression

(grepl) to select all columns containing the intensities in the six maps and take

the log2 logarithm.
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• The output of the log scaling node is also used to draw a boxplot that can be

used to examine the structure of the data. Since we only want to plot the in-

tensities in the different maps (and not m/z or rt) we first use a Column Filter

node to keep only the columns that contain the intensities. We connect the re-

sulting table to a Box Plot node which draws one box for every column in the

input table. Right-click and select View: Box Plot .

• The median normalization is performed in a similar way to the log scaling. First

we calculate the median intensity for each intensity column, then we subtract

the median from every intensity.

• Open the Box Plot connected to the normalization node and compare it to the

box plot connected to the log scaling node to examine the effect of the median

normalization.

• To perform the t-test we defined the two groups we want to compare. Finally

we save the p-values and fold-changes in two new columns named p-value and

FC.

• The Numeric Row Splitter is used to filter less interesting parts of the data. In

this case we only keep columns where the fold-change is ≥ 2.

• We adjust the p-values for multiple testing using Benjamini-Hochberg and keep

all consensus features with a q-value≤ 0.01 (i.e. we target a false-discovery rate

of 1%).

6.4.4 Interactive visualization

KNIME supports multiple nodes for interactive visualization with interrelated output.

The nodes used in this part of the workflow exemplify this concept. They further

demonstrate how figures with data dependent customization can be easily realized

using basic KNIME nodes. Several simple operations are concatenated in order to

enable an interactive volcano plot.

• We first log-transform fold changes and p-values in the R Snippet node. We

then append columns noting interesting features (concerning fold change and

p-value).

• With this information, we can use various Manager nodes ( Views Property ) to

emphasize interesting data points. The configuration dialogs allow us to select

columns to change color, shape or size of data points dependent on the column

values.
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• The Scatter Plot node ( Views ) enables interactive visualization of the logarith-

mized values as a volcano plot: the log-transformed values can be chosen in the

‘Column Selection’ tab of the plot view. Data points can be selected in the plot

and highlighted via the menu option. The highlighting transfers to all other in-

teractive nodes connected to the same data table. In our case, selection and

the highlighting will also occur in the Interactive Table node ( Views ).

• Output of the interactive table can then be filtered via the ”HiLite” menu tab.

For example, we could restrict shown rows to points highlighted in the volcano

plot.

Inspect the nodes of this section. Customize your visualization and pos-

sibly try to visualize other aspects of your data.

Task

6.4.5 Advanced visualization

R Dependencies: This section requires that the R packages ggplot2 and ggfortify are

both installed. ggplot2 is part of the KNIME R Statistics Integration (Windows Bina-

ries)which should already be installed via the full KNIME installer, ggfortify however

is not. In case that you use an R installation where one or both of them are not yet

installed, add an R Snippet node and double-click to configure. In the R Script text

editor, enter the following code:

#Include the next line if you also have to install ggplot2:
install.packages(”ggplot2”)
#Include the following lines to install ggfortify:
install.packages(”ggfortify”)
library(ggplot2)
library(ggfortify)

You can remove the install.packages commands once it was successfully installed.

Even though the basic capabilities for (interactive) plots in KNIME are valuable for

initial data exploration, professional looking depiction of analysis results often relies

on dedicated plotting libraries. The statistics language R supports the addition of a

large variety of packages, including packages providing extensive plotting capabili-

ties. This part of the workflow shows how to use R nodes in KNIME to visualize more

advanced figures. Specifically, we make use of different plotting packages to realize

heatmaps.

• The used RView (Table) nodes combine the possibility to write R snippet code

with visualization capabilities inside KNIME. Resulting images can be looked at

in the output RView, or saved via the Image Writer (Port) node.
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• The heatmap nodes make use of the gplots libary, which is by default part of the

R Windows binaries (for full KNIME version 3.1.1 or higher). We again use regu-

lar expressions to extract all measured intensity columns for plotting. For clar-

ity, feature names are only shown in the heatmap after filtering by fold changes.

6.4.6 Data preparation for Reporting

Following the identification, quantification and statistical analysis our data is merged

and formatted for reporting. First we want to discard our normalized and logarith-

mized intensity values in favor of the original ones. To this end we first remove the

intensity columns (Column Filter) and add the original intensities back (Joiner). For

that we use an Inner Join 2 with the Joiner node. In the dialog of the node we add

two entries for the Joining Columns and for the first column we pick ”retention_time”

from the top input (i.e. the AccurateMassSearch output) and ”rt_cf” (the retention

time of the consensus features) for the bottom input (the result from the quantifica-

tion). For the second column you should choose ”exp_mass_to_charge” and ”mz_cf”

respectively to make the joining unique. Note that the workflow needs to be exe-

cuted up to the previous nodes for the possible selections of columns to appear.

Figure 43: Data preparation for reporting

What happens if we use a Left Outer Join,RightOuter Join or Full Outer

Join instead of the Inner Join?

Question

2Inner Join is a technical term that describes how database tables are merged.
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Inspect the output of the join operation after the Molecule Type Cast

and RDKit molecular structure generation.

Task

While all relevant information is now contained in our table the presentation could

be improved. Currently, we have several rows corresponding to a single consensus

feature (=linked feature) but with different, alternative identifications. It would be

more convenient to have only one row for each consensus feature with all accurate

mass identifications added as additional columns. To this end, we use the Column to

Grid node that flattens several rows with the same consensus number into a single

one. Note that we have to specify the maximum number of columns in the grid so

we set this to a large value (e.g. 100). We finally export the data to an Excel file (XLS

Writer).
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7 OpenSWATH

7.1 Introduction

OpenSWATH [21] allows the analysis of LC-MS/MS DIA (data independent acquisition)

data using the approach described by Gillet et al. [22]. The DIA approach described

there uses 32 cycles to iterate through precursor ion windows from 400-426 Da to

1175-1201 Da and at each step acquires a complete, multiplexed fragment ion spec-

trum of all precursors present in that window. After 32 fragmentations (or 3.2 sec-

onds), the cycle is restarted and the first window (400-426 Da) is fragmented again,

thus delivering complete “snapshots” of all fragments of a specific window every 3.2

seconds.

The analysis approach described by Gillet et al. extracts ion traces of specific frag-

ment ions from all MS2 spectra that have the same precursor isolation window, thus

generating data that is very similar to SRM traces.

7.2 Installation of OpenSWATH

OpenSWATH has been fully integrated since OpenMS 1.10 [4, 2, 23, 24, 25]).

7.3 Installation of mProphet

mProphet (http://www.mprophet.org/) [26] is available as standalone script in External_Tools

mProphet . R (http://www.r-project.org/) and the package MASS (http://cran.

r-project.org/web/packages/MASS/) are further required to execute mProphet. Please

obtain a version for either Windows, Mac or Linux directly from CRAN.

PyProphet, a much faster reimplementation of the mProphet algorithm is available

from PyPI (https://pypi.python.org/pypi/pyprophet/). The usage of pyprophet in-

stead of mProphet is suggested for large-scale applications.

mProphet will be used in this tutorial.
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7.4 Generating the Assay Library

7.4.1 Generating TraML from transition lists

OpenSWATH requires an assay library to be supplied in the TraML format [27]. To en-

able manual editing of transition lists, the TOPP tool TargetedFileConverter is avail-

able, which uses tab separated files as input. Example datasets are provided in

Example_Data OpenSWATH assay . Please note that the transition lists need to be

named .tsv.

The header of the transition list contains the following variables (with example values

in brackets):

Required Columns:

PrecursorMz

The mass-to-charge (m/z) of the precursor ion. (924.539)

ProductMz

The mass-to-charge (m/z) of the product or fragment ion. (728.99)

LibraryIntensity

The relative intensity of the transition. (0.74)

NormalizedRetentionTime

The normalized retention time (or iRT) [28] of the peptide. (26.5)

Targeted Proteomics Columns:

ProteinId

A unique identifier for the protein. (AQUA4SWATH_HMLangeA)

PeptideSequence

The unmodified peptide sequence. (ADSTGTLVITDPTR)

ModifiedPeptideSequence

The peptide sequence with UniMod modifications. (ADSTGTLVITDPTR(UniMod:267))

PrecursorCharge

The precursor ion charge. (2)

ProductCharge

The product ion charge. (2)

Grouping Columns:
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TransitionGroupId

A unique identifier for the transition group.

(AQUA4SWATH_HMLangeA_ADSTGTLVITDPTR(UniMod:267)/2)

TransitionId

A unique identifier for the transition.

(AQUA4SWATH_HMLangeA_ADSTGTLVITDPTR(UniMod:267)/2_y8)

Decoy

A binary value whether the transition is target or decoy. (target: 0, decoy: 1)

PeptideGroupLabel

Which label group the peptide belongs to.

DetectingTransition

Use transition for peak group detection. (1)

IdentifyingTransition

Use transition for peptidoform inference using IPF. (0)

QuantifyingTransition

Use transition to quantify peak group. (1)

For further instructions about generic transition list and assay library generation please

see http://openswath.org/en/latest/docs/generic.html.

To convert transitions lists to TraML, use the TargetedFileConverter: Please use the

absolute path to your OpenMS installation.

Linux or Mac

On the Terminal:

TargetedFileConverter -in OpenSWATH_SGS_AssayLibrary_woDecoy.tsv -out
OpenSWATH_SGS_AssayLibrary_woDecoy.TraML↪→

Windows

On the TOPP command line:
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TargetedFileConverter.exe -in OpenSWATH_SGS_AssayLibrary_woDecoy.tsv -out
OpenSWATH_SGS_AssayLibrary_woDecoy.TraML↪→

7.4.2 Appending decoys to a TraML file

In addition to the target assays, OpenSWATH requires decoy assays in the library

which are later used for classification and error rate estimation. For the decoy gen-

eration it is crucial that the decoys represent the targets in a realistic but unnatu-

ral manner without interfering with the targets. The methods for decoy generation

implemented in OpenSWATH include ’shuffle’, ’pseudo-reverse’, ’reverse’ and ’shift’.

To append decoys to a TraML, the TOPP tool OpenSwathDecoyGenerator can be used:

Please use the absolute path to your OpenMS installation.

Linux or Mac

On the Terminal:

OpenSwathDecoyGenerator -in OpenSWATH_SGS_AssayLibrary_woDecoy.TraML -out
OpenSWATH_SGS_AssayLibrary.TraML -method shuffle -switchKR false↪→

Windows

On the TOPP command line:

OpenSwathDecoyGenerator.exe -in OpenSWATH_SGS_AssayLibrary_woDecoy.TraML -out
OpenSWATH_SGS_AssayLibrary.TraML -method shuffle -switchKR false↪→

7.5 OpenSWATH KNIME

An example KNIME workflow for OpenSWATH is supplied in Workflows (Fig. 44).

The example dataset can be used for this workflow (filenames in brackets):

1. Open Workflows OpenSWATH.knwf in KNIME: File Import KNIME Workflow... .

2. Select the normalized retention time (iRT) assay library in TraML format by double-

clicking on node Input File iRT Assay Library .

( Example_Data OpenSWATH assay OpenSWATH_iRT_AssayLibrary.TraML)

3. Select the SWATH MS data in mzML format as input by double-clicking on node
Input File SWATH-MS files .

( Example_Data OpenSWATH data split_napedro_L120420_010_SW-*.nf.pp.mzML)

4. Select the target peptide assay library in TraML format as input by double-clicking

on node Input Files Assay Library .

( Example_Data OpenSWATH assay OpenSWATH_SGS_AssayLibrary.TraML)
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5. Set the output destination by double-clicking on node Output File .

6. Run the workflow.

The resulting output can be found at your selected path, which will be used as input

for mProphet. Execute the script on the Terminal (Linux or Mac) or cmd.exe (Win-

dows) in Example_Data OpenSWATH result. Please use the absolute path to your R

installation and the result file:

R --slave --args bin_dir=../../../External_Tools/mProphet/ mquest=OpenSWATH_quant.tsv
workflow=LABEL_FREE num_xval=5 run_log=FALSE write_classifier=1 write_all_pg=1 <
../../../External_Tools/mProphet/mProphet.R

↪→
↪→

or for windows

”C:\Program Files\R\R-3.5.1\bin\x86\R.exe” --slave --args
bin_dir=../../../External_Tools/mProphet/ mquest=OpenSWATH_quant.tsv
workflow=LABEL_FREE num_xval=5 run_log=FALSE write_classifier=1 write_all_pg=1 <
../../../External_Tools/mProphet/mProphet.R

↪→
↪→
↪→

The main output will be called

OpenSWATH result mProphet_all_peakgroups.xls

with statistical information available in

OpenSWATH result mProphet.pdf.

Please note that due to the semi-supervised machine learning approach of mProphet

the results differ slightly when mProphet is executed several times.

Additionally the chromatrogam output (.mzML) can be visualized for inspection with

TOPPView.

For additional instructions on how to use pyProphet instead of mProphet please have

a look at the PyProphet Legacy Workflow http://openswath.org/en/latest/docs/

pyprophet_legacy.html. If you want to use the SQLite-based workflow in your lab in

the future, please have a look here: http://openswath.org/en/latest/docs/pyprophet.

html. The SQLite-based workflow will not be part of the tutorial.

7.6 From the example dataset to real-life applications

The sample dataset used in this tutorial is part of the larger SWATH MS Gold Standard

(SGS) dataset which is described in the publication of Roest et al. [21]. It contains one
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Figure 44: OpenSWATH KNIME Workflow.

of 90 SWATH-MS runs with significant data reduction (peak picking of the raw, profile

data) to make file transfer and working with it easier. Usually SWATH-MS datasets are

huge with several gigabyte per run. Especially when complex samples in combination

with large assay libraries are analyzed, the TOPP tool based workflow requires a lot

of computational resources. Additional information and instruction can be found at

http://openswath.org/en/latest/.
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8 OpenSWATH for Metabolomics

8.1 Introduction

We would like to present an automated DIA/SWATH analysis workflow for metabolomics,

which takes advantage of experiment specific target-decoy assay library generation.

This allows for targeted extraction, scoring and statistical validation of metabolomics

DIA data [29], [30].

8.2 Workflow

The workflow follows multiple steps (see Fig. 45).

Figure 45: DIAMetAlyzer - pipeline for assay library generation and targetedanal-
ysiswith statistical validationDDA data is used for candidate identification contain-
ing feature detection, adduct grouping and accurate mass search. Library construc-
tion uses fragment annotation via compositional fragmentation trees and decoy gen-
eration using a fragmentation tree re-rooting method to create a target-decoy assay
library. This library is used in a second step to analyse metabolomics DIA data per-
forming targeted extraction, scoring and statistical validation (FDR estimation).

Candidate identification. Feature detection, adduct grouping and accurate mass

search are applied on DDA data. Library construction. The knowledge determined

from the DDA data, about compound identification, its potential adduct and the cor-

responding fragment spectra are used to perform fragment annotation via composi-

tional fragmentation trees sugin SIRIUS 4 [31]. Afterwards transitions, which are the

reference of a precursor to its fragment ions are stored in a so-called assay library

(Fig. 46). Assay libraries usually contain additional metadata (i.e. retention time,

peak intensities). FDR estimation is based on the target-decoy approach [32]. For the

generation of the MS2 decoys, the fragmentation tree-based rerooting method by

Passatutto ensure the consistency of decoy spectra (Fig.47) [33]. The target-decoy
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Figure 46: Assay library generation The results of the compound identification (fea-
ture, molecular formula, adduct), with the corresponding fragment spectra for the
feature, are used to perform fragment annotation via SIRIUS, using the composi-
tional fragmentation trees. Then, the n highest intensity transitions are extracted
and stored in the assay library.

Figure 47: Decoy generation The compositional fragmentations trees from the step
above are used to run the fragmentation tree re-rooting method from Passatutto,
generating a compound specific decoy MS2 spectrum. Here, the n highest intensity
decoy transitions are extracted and stored in the target-decoy assay library.

assay library is then used to analyse the SWATH data. Targeted extraction. Chro-

matogram extraction and peak-group scoring. This step is performed using an algo-

rithm based on OpenSWATH [29] for metabolomics data. Statistical validation FDR

estimation uses the PyProphet algorithm [30]. To prevent overfitting we chose the

simpler linear model (LDA) for target-decoy discrimination in PyProphet, using MS1

and MS2 scoring with low correlated scores.

8.3 Prerequisites

Apart from the usual KNIME nodes, the workflow uses python scripting nodes. One

basic requirement for the installation of python packages, in particular pyOpenMS,

is a package manager for python. Using conda as an environment manger allows to

specify a specific environment in the KNIME settings ( File Preferences KNIME Python )
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8.3.1 Windows

We suggest do use a virtual environment for the Python 3 installation on windows.

Here you can install miniconda and follow the further instructions.

1. Create new conda python environment

conda create -n py39 python=3.9

2. Activate py39 environment

conda activate py39

3. Install pip (see above)

4. On the command line:

python -m pip install -U pip
python -m pip install -U numpy
python -m pip install -U pandas
python -m pip isntall -U pyprophet
python -m pip install -U pyopenms

8.3.2 MacOS

We suggest do use a virtual environment for the Python 3 installation on Mac. Here

you can install miniconda and follow the further instructions.

1. Create new conda python environment

conda create -n py39 python=3.9

2. Activate py39 environment

conda activate py39

3. On the Terminal:

python -m pip install -U pip
python -m pip install -U numpy
python -m pip install -U pandas
python -m pip isntall -U pyprophet
python -m pip install -U pyopenms
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8.3.3 Linux

Use your package manager apt-get or yum, where possible.

1. Install Python 3.9 (Debian: python-dev, RedHat: python-devel)

2. Install NumPy (Debian / RedHat: python-numpy)

3. Install setuptools (Debian / RedHat: python-setuptools)

4. On the Terminal:

python -m pip install -U pip
python -m pip install -U numpy
python -m pip install -U pandas
python -m pip isntall -U pyprophet
python -m pip install -U pyopenms

8.4 Benchmark data

For the assay library construction pesticide mixes (Agilent Technologies, Waldbronn,

Germany) were measured individually in solvent (DDA). Benchmark DIA samples were

prepared by spiking different commercially available pesticide mixes into human plasma

metabolite extracts in a 1:4 dilution series, which covers 5 orders of magnitude.

The example data can be found here: https://abibuilder.informatik.uni-tuebingen.

de/archive/openms/Tutorials/Data/DIAMetAlyzer/

8.5 Example Workflow

Example workflow for the usage of the DIAMetAlyzer Pipeline in KNIME (see Fig. 48).

Inputs are the SWATH-MS data in profile mode (.mzML), a path for saving the new

target-decoy assay library, the SIRIUS 4.9.0 executable, the DDA data (.mzML), custom

libraries and adducts for AccurateMassSearch, the min/max fragment mass-to-charge

to be able to restrict the mass of the transitions and the path to the PyProphet ex-

ecutable. The DDA is used for feature detection, adduct grouping, accurate mass

search and forwarded to the AssayGeneratorMetabo. Here, feature mapping is per-

formed to collect MS2 spectra that belong to a feature. All information collected

before (feautre, adduct, putative identification, MS2 spectra) are then internally for-

warded to SIRIUS. SIRIUS is used for fragment annotation and decoy generation based

on the fragmentation tree re-rooting approach. This information is then used to fil-

ter spectra/decoys based on their explained intensity (min. 85%). Afterwards internal

feature linking is performed which is most important for untargeted experiments us-

ing a lot of DDA data to construct the library. The constructed target-decoy assay
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library is processed with the SWATH-MS data in OpenSWATH. The results are used by

PyProphet for scoring and output a list of metabolites with their respective q-value

and quantitative information.

Figure 48: Example workflow for the usage of the DIAMetAlyzer Pipeline in KNIME

8.6 Run the Workflow

These steps need to be followed to run the workflow successfully:

• Add DDA Input Files (.mzML).

• Specify SIRIUS 4.9.0 executable.

• Specify library files (mapping, struct) for AccurateMassSearch.

• Add positive/negative adducts lists for AccurateMassSearch

• Supply an output path for the SIRIUS workspace in the AssayGeneratorMetabo.

• Specify additional paths and variables, such as an output path for the target-

decoy assay library and a path to the pyprophet installation as well as decoy

fragment mz filter (min/max).

• Input DIA/SWATH files (.mzML).

• Specify output path in the output folders.

• Ready to go - run the workflow!
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8.7 Important parameters

Please have a look at the most important parameters, which should be tweaked to fit

your data. In general, OpenMS has a lot of room for parameter optimization to best

fit your chromatography and instrumental settings.

FeatureFinderMetabo:

parameter explanation

noise_threshold_int Intensity threshold below which peaks are regarded as

noise.

chrom_fwhm Expected chromatographic peak width (in seconds).

mass_error_ppm Allowed mass deviation (in ppm)

MetaboliteAdductDecharger:

parameter explanation

mass_max_diff Maximum allowed mass tolerance per feature..

potential_adducts Adducts used to explain mass differences - These should

fit to the adduct list specified for AccurateMassSearch.

AccurateMassSearch:

parameter explanation

mass_error_value Tolerance allowed for accurate mass search.

ionization_mode Positive or negative ionization mode.

AssayGeneratorMetabo:
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parameter explanation

min_transitions Minimal number of transitions (3).

max_transitions Maximal number of transitions (3).

min_fragment_mz Minimal m/z of a fragment ion choosen as a transition

max_fragment_mz Maximal m/z of a fragment ion choosen as a transition

transitions_threshold Further transitions need at least x% of the maximum in-

tensity.

fragment_annotation

score_threshold

Filters annotations based on the explained intensity of

the peaks in a spectrum (0.8).

SIRIUS (internal):

out_workspace_directory Output directory for SIRIUS workspace (Fragmentation

Trees).

filter_by_num_masstraces Features have to have at least x MassTraces. To use this

parameter feature_only is neccessary.

precursor_mass_tolerance Tolerance window for precursor selection (Feature se-

lection in regard to the precursor).

precursor_rt_tolerance Tolerance allowed for matching MS2 spectra depeding

on the feature size (should be around the FWHM of the

chromatograms).

profile Specify the used analysis profile (e.g. qtof).

elements Allowed elements for assessing the putative sumfor-

mula (e.g. CHNOP[5]S[8]Cl[1]). Elements found in the

isotopic pattern are added automatically, but can be

specified nonetheless.

Feature linking (internal):

ambiguity_resolution

mz_tolerance

M/z tolerance for the resolution of identification ambi-

guity over multiple files - Feature linking m/z tolerance.

ambiguity_resolution

rt_tolerance

RT tolerance in seconds for the resolution of identifica-

tion ambiguity over multiple files - Feature linking m/z

tolerance.

total_occurrence_filter Filter compound based on total occurrence in analysed

samples.

In case of the total_occurrence_filter the value to chose depends on the analysis

strategy used. In the instance you are using only identified compounds (use_known_unkowns

= false) - it will filter based on identified features. This means that even if the feature

was detected in e.g. 50% of all samples it might be only identified correctly by accu-

rate mass search in 20% of all samples. Using a total_occurrence_filter this specific

feature would still be filtered out due to less identifications.

OpenSWATH:
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parameter explanation

rt_extraction_window Extract x seconds around this value.

rt_normalization_factor Please use the range of your gradient e.g. 950 seconds.

If you are analysing a lot of big DIA mzML files ≈ 3-20GB per File, it makes sense to

change how OpenSWATH processes the spectra.

parameter explanation

readOptions Set cacheWorkingInMemory - will cache the files to disk

and read SWATH-by-SWATH into memory

tempDirectory Set a directory, where cached mzMLs are stored (be

aware that his directory can be quite huge depending

on the data).

In the workflow pyprophet is called after OpenSWATH, it merges the result files,

which allows to get enough data for the model training.

pyprophet merge --template path_to_target-decoy_assay_library.pqp --out merged.osw
./*.osw↪→

Afterwards, the results are scored using the MS1 and MS2 levels and filter for metabolomics

scores, which have a low correlation.

pyprophet score --in merged.osw --out scored.osw --level ms1ms2 --ss_main_score
”var_isotope_correlation_score” --ss_score_filter metabolomics↪→

Export the non filtered results:

pyprophet export-compound --in scored.osw --out scored + ”_pyprophet_nofilter_ms1ms2.tsv”
--max_rs_peakgroup_qvalue 1000.0

Please see the workflow for actual parameter values used for the benchmarking dataset.

The workflow can be used without any identification (remove AccurateMassSearch).

Here, all features (known_unknowns) are processed. The assay library is constructed

based on the chemical composition elucidated via the fragment annotation (SIRIUS 4).

It is also possible to use identified and in addition unknown (non-identified) features,

by using AccurateMassSearch in combination with the use_known_unknowns in the

AssayGeneratorMetabo.
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9 An introduction to pyOpenMS

9.1 Introduction

pyOpenMS provides Python bindings for a large part of the OpenMS library for mass

spectrometry based proteomics and metabolomics. It thus provides access to a feature-

rich, open-source algorithm library for mass-spectrometry based LC-MS analysis. These

Python bindings allow raw access to the data-structures and algorithms implemented

in OpenMS, specifically those for file access (mzXML, mzML, TraML, mzIdentML among

others), basic signal processing (smoothing, filtering, de-isotoping and peak-picking)

and complex data analysis (including label-free, SILAC, iTRAQ and SWATH analysis

tools).

pyOpenMS is integrated into OpenMS starting from version 1.11. This tutorial is ad-

dressed to people already familiar with Python. If you are new to Python, we suggest

to start with a Python tutorial (https://en.wikibooks.org/wiki/Non-Programmer%27s_

Tutorial_for_Python_3).

9.2 Installation

One basic requirement for the installation of python packages, in particular pyOpenMS,

is a package manager for python. We provide a package forpip (https://pypi.python.

org/pypi/pip).

9.2.1 Windows

1. Install Python 3.9 (http://www.python.org/download/)

2. Install NumPy (http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy)

3. Install pip (see above)

4. On the command line:

python -m pip install -U pip
python -m pip install -U numpy
python -m pip install pyopenms

9.2.2 MacOS

We suggest do use a virtual environment for the Python 3 installation on Mac. Here

you can install miniconda and follow the further instructions.

97

https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip
http://www.python.org/download/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy


1. Create new conda python environment

conda create -n py37 python=3.9 anaconda

2. Activate py37 environment

source activate py37

3. On the Terminal:

pip install -U pip
pip install -U numpy
pip install pyopenms

9.2.3 Linux

Use your package manager apt-get or yum, where possible.

1. Install Python 3.9 (Debian: python-dev, RedHat: python-devel)

2. Install NumPy (Debian / RedHat: python-numpy)

3. Install setuptools (Debian / RedHat: python-setuptools)

4. On the Terminal:

pip install pyopenms

9.2.4 IDE with Anaconda integration

If you do not have python installed or do not want to modify your native installation,

another possibility is to use an IDE (integrated development environment) with Ana-

conda integration. Here, we recommend spyder (https://www.spyder-ide.org/). It

comes with Anaconda, which is a package and environment manager. Thus the IDE

should be able to run a specific environment independent of your systems python in-

stallation.

Please execute the installer for your respective platform located in the respective di-

rectory for your platform and follow the installation instructions.

After installation the ANACONDA Navigator (Anaconda 3) should be available. Please

start the application. To install pyopenms please choose the button ”Environments”
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and click the play symbol of the base environment and ”Open Terminal”.

Update pip and install pyopenms (MacOS, Linux):

pip install -U pip
pip install -U numpy
pip install -U pyopenms

Update pip and install pyopenms (Windows):

python -m pip install -U pip
python -m pip install -U numpy
python -m pip install -U pyopenms

Install a local available package:

pip install numpy-1.20.0-cp37*.whl
pip install pyopenms-2.7.0-cp37*.whl
or (in case of windows)
python -m pip install -U numpy-1.20.0-cp37*.whl
python -m pip install -U pyopenms-2.7.0-cp37*.whl

The local available packages can be found in the directory corresponding to your op-

erating system. Please use the absolute path to the packages for the installation.

Now launch ”Spyder” (python IDE) in the home menu.

9.3 Build instructions

Instructions on how to build pyOpenMS can be found online (https://pyopenms.readthedocs.

io/en/release_2.7.0/build_from_source.html).

9.4 Scripting with pyOpenMS

A big advantage of pyOpenMS are its scripting capabilities (beyond its application in

tool development). Most of the OpenMS datastructure can be accessed using python

(https://abibuilder.informatik.uni-tuebingen.de/archive/openms/Documentation/

nightly/html/index.html). Here we would like to give some examples on how py-

OpenMS can be used for simple scripting task, such as peptide mass calculation and

peptide/protein digestion as well as isotope distribution calculation.

Calculation of the monoisotopic and average mass of a peptide sequence
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from pyopenms import *

seq = AASequence.fromString(”DFPIANGER”)

mono_mass = seq.getMonoWeight(Residue.ResidueType.Full, 0)
average_mass = seq.getAverageWeight(Residue.ResidueType.Full, 0)

print(”The masses of the peptide sequence ” + seq.toString().decode('utf-8') + ” are:”)
print(”mono: ” + str(mono_mass))
print(”average: ”+ str(average_mass))

Enzymatic digest of a peptide/protein sequence

enzyme = ”Trypsin”
to_digest = AASequence.fromString(”MKWVTFISLLLLFSSAYSRGVFRRDTHKSEIAHRFKDLGE”)
after_digest = []

EnzymaticDigest = EnzymaticDigestionLogModel()
EnzymaticDigest.setEnzyme(enzyme)
EnzymaticDigest.digest(to_digest, after_digest)

print(”The peptide ” + to_digest.toString().decode('utf-8') + ” was digested using ” +
str(EnzymaticDigest.getEnzymeName().decode('utf-8')) + ” to:”)↪→

for element in after_digest:
print(element.toString().decode('utf-8'))

Use empirical formula to calculate the isotope distribution

from pyopenms import *

methanol = EmpiricalFormula(”CH3OH”)
water = EmpiricalFormula(”H2O”)
wm = EmpiricalFormula(water.toString().decode('utf-8') +

methanol.toString().decode('utf-8'))↪→
print(wm.toString().decode('utf-8'))
print(wm.getElementalComposition())

isotopes = wm.getIsotopeDistribution( CoarseIsotopePatternGenerator(3) )
for iso in isotopes.getContainer():

print (iso.getMZ(), ”:”, iso.getIntensity())

For further examples and the pyOpenMS datastructure please see https://pyopenms.

readthedocs.io/en/release_2.7.0/datastructures.html.

9.5 Tool development with pyOpenMS

Scripting is one side of pyOpenMS, the other is the ability to create Tools using the

C++ OpenMS library in the background. In the following section we will create a ”Pro-

teinDigestor” pyOpenMS Tool. It should be able to read in a fasta file. Digest the pro-

teins with a specific enzyme (e.g. Trypsin) and export an idXML output file. Please

see Example_Data pyopenms for code snippets.
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usage: ProteinDigestor.py [-h] [-in INFILE] [-out OUTFILE] [-enzyme ENZYME]
[-min_length MIN_LENGTH] [-max_length MAX_LENGTH]
[-missed_cleavages MISSED_CLEAVAGES]

ProteinDigestor −− In silico digestion of proteins.

optional arguments:
-h, --help show this help message and exit
-in INFILE An input file containing amino acid sequences [fasta]
-out OUTFILE Output digested sequences in idXML format [idXML]
-enzyme ENZYME Enzyme used for digestion
-min_length MIN_LENGTH Minimum length of peptide
-max_length MAX_LENGTH Maximum length of peptide
-missed_cleavages MISSED_CLEAVAGES The number of allowed missed

cleavages↪→

9.5.1 Basics

First, your tool needs to be able to read parameters from the command line and pro-

vide a main routine. Here standard Python can be used (no pyOpenMS is required so

far).

#!/usr/bin/env python
import sys

def main(options):

# test parameter handling
print(options.infile, options.outfile, options.enzyme, options.min_length,

options.max_length, options.missed_cleavages)↪→

def handle_args():
import argparse

usage = ””
usage += ”\nProteinDigestor −− In silico digestion of proteins.”

parser = argparse.ArgumentParser(description = usage)
parser.add_argument('-in', dest='infile', help='An input file containing amino acid

sequences [fasta]')↪→
parser.add_argument('-out', dest='outfile', help='Output digested sequences in idXML

format [idXML]')↪→
parser.add_argument('-enzyme', dest='enzyme', help='Enzyme used for digestion')
parser.add_argument('-min_length', type=int, dest='min_length', help ='Minimum length

of peptide')↪→
parser.add_argument('-max_length', type=int, dest='max_length', help='Maximum length

of peptide')↪→
parser.add_argument('-missed_cleavages', type=int, dest='missed_cleavages', help='The

number of allowed missed cleavages')↪→

args = parser.parse_args(sys.argv[1:])
return args

if __name__ == '__main__':
options = handle_args()
main(options)
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Open the Anaconda Terminal and change into the Example_Data pyopenms direc-

tory. Execute the example script.

python ProteinDigestor_argparse.py -h

python ProteinDigestor_argparse.py -in mini_example.fasta -out mini_example_out.idXML
-enzyme Trypsin -min_length 6 -max_length 40 -missed_cleavages 1↪→

The parameters are being read from the command line by the function handle_args()

and given to the main() function of the script, which prints the different variables.

OpenMS has a ProteaseDB class containing a list of enzymes which can be used for

digestion of proteins. You can add this to the argparse code to be able to see the

usable enzymes. From this point onward pyOpenMS is required.

# from here pyopenms is needed
# get available enzymes from ProteaseDB
all_enzymes = []
p_db=ProteaseDB().getAllNames(all_enzymes)

# concatenate them to the enzyme argument.
parser.add_argument('-enzyme', dest='enzyme', help='Enzymes which can be used for

digestion: '+ ', '.join(map(bytes.decode, all_enzymes)))↪→

9.5.2 Loading data structures with pyOpenMS

We already scripted enzymatic digestion with the AASequence and EnzymaticDigest

(see above). To make this even easier, we can use an existing class in OpenMS, called

ProteaseDigestion.

# Use the ProteaseDigestion class
# set the enzyme used for digestion and the number of missed cleavages
digestor = ProteaseDigestion()
digestor.setEnzyme(options.enzyme)
digestor.setMissedCleavages(options.missed_cleavages)

# call the ProteaseDigestion::digest function
# which will return the number of discarded digestions products
# and fill the current_digest list with digestes peptide sequences
digestor.digest(aaseq.fromString(fe.sequence), current_digest, options.min_length,

options.max_length)↪→

The next step is to use FASTAFile class to read the fasta input:
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# construct a FASTAFile Object and read the input file
ff = FASTAFile()
ff.readStart(options.infile)

# construct and FASTAEntry Object
fe = FASTAEntry()

# loop over the entry in the fasta while using while
while(ff.readNext(fe)):

The output idXML needs the information about protein and peptide level, which can

be saved in the ProteinIdentification and PeptideIdentification classes.

idxml = IdXMLFile()
idxml.store(options.outfile, protein_identifications, peptide_identifications)

This is the part of the program which unifies the snippets provided above. Please

have a closer look how the protein and peptide datastructure is incorporated in the

program.

def main(options):
# read fasta file
ff = FASTAFile()
ff.readStart(options.infile)
fe = FASTAEntry()

# use ProteaseDigestion class
digestor = ProteaseDigestion()
digestor.setEnzyme(options.enzyme)
digestor.setMissedCleavages(options.missed_cleavages)

# protein and peptide datastructure
protein_identifications = []
peptide_identifications = []
protein_identification = ProteinIdentification()
protein_identifications.append(protein_identification)
temp_pe = PeptideEvidence()

# number of dropped peptides due to length restriction
dropped_by_length = 0

while(ff.readNext(fe)):
# construct ProteinHit and fill it with sequence information
temp_protein_hit = ProteinHit()
temp_protein_hit.setSequence(fe.sequence)
temp_protein_hit.setAccession(fe.identifier)

# save the ProteinHit in a ProteinIdentification Object
protein_identification.insertHit(temp_protein_hit)

# construct a PeptideHit and save the ProteinEvidence (Mapping) for the specific
# current protein
temp_peptide_hit = PeptideHit()
temp_pe.setProteinAccession(fe.identifier);
temp_peptide_hit.setPeptideEvidences([temp_pe])

# digestion
current_digest = []
aaseq = AASequence()
if (options.enzyme == ”none”):
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current_digest.append(aaseq.fromString(fe.sequence))
else:

dropped_by_length += digestor.digest(aaseq.fromString(fe.sequence),
current_digest, options.min_length, options.max_length)↪→

for seq in current_digest:
# fill the PeptideHit and PeptideIdentification datastructure
peptide_identification = PeptideIdentification()
temp_peptide_hit.setSequence(seq)
peptide_identification.insertHit(temp_peptide_hit)
peptide_identifications.append(peptide_identification)

print(str(dropped_by_length) + ” peptides have been dropped due to the length
restriction.”)↪→

idxml = IdXMLFile()
idxml.store(options.outfile, protein_identifications, peptide_identifications)

9.5.3 Putting things together

The paramter input and the functions can be used to construct the program we are

looking for. If you are struggling please have a look in the example data section Pro-

teinDigestor.py

Now you can run your tool in the Anaconda Terminal ( Example_Data pyopenms):

python ProteinDigestor.py -in mini_example.fasta -out mini_example_out.idXML -enzyme
Trypsin -min_length 6 -max_length 40 -missed_cleavages 1↪→

9.5.4 Bonus task

Implement all other 184 TOPP tools using pyOpenMS.
Task
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10 Quality control

10.1 Introduction

In this chapter, we will build on an existing workflow with OpenMS / KNIME to add

some quality control (QC). We will utilize the qcML tools in OpenMS to create a file

with which we can collect different measures of quality to the mass spectrometry

runs themselves and the applied analysis. The file also serves the means of visually

reporting on the collected quality measures and later storage along the other anal-

ysis result files. We will, step-by-step, extend the label-free quantitation workflow

from section 3 with QC functions and thereby enrich each time the report given by

the qcML file. But first, to make sure you get the most of this tutorial section, a little

primer on how we handle QC on the technical level.

QC metrics and qcML

To assert the quality of a measurement or analysis we use quality metrics. Metrics

are describing a certain aspect of the measurement or analysis and can be anything

from a single value, over a range of values to an image plot or other summary. Thus,

qcML metric representation is divided into QC parameters (QP) and QC attachments

(QA) to be able to represent all sorts of metrics on a technical level.

A QP may (or may not) have a value which would equal a metric describable with a sin-

gle value. If the metric is more complex and needs more than just a single value, the

QP does not require the single value but rather depends on an attachment of values

(QA) for full meaning. Such a QA holds the plot or the range of values in a table-like

form. Like this, we can describe any metric by a QP and an optional QA.

To assure a consensual meaning of the quality parameters and attachments, we cre-

ated a controlled vocabulary (CV). Each entry in the CV describes a metric or part/extension

thereof. We embed each parameter or attachment with one of these and by doing so,

connect a meaning to the QP/QA. Like this, we later know exactly what we collected

and the programs can find and connect the right dots for rendering the report or cal-

culating new metrics automatically. You can find the constantly growing controlled

vocabulary here:
https://github.com/qcML/qcML-development/blob/master/cv/qc-cv.obo .

Finally, in a qcml file, we split the metrics on a per mass-spectrometry-run base or a

set of mass-spectrometry-runs respectively. Each run or set will contain its QP/QA

we calculate for it, describing their quality.
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10.2 Building a qcML file per run

As a start, we will build a basic qcML file for each mzML file in the label-free analysis.

We are already creating the two necessary analysis files to build a basic qcML file upon

each mzML file, a feature file and an identification file. We use the QCCalculatornode

from Community Nodes OpenMS Utilities where also all other QC* nodes will be found.

The QCCalculator will create a very basic qcML file in which it will store collected and

calculated quality data.

• Copy your label-fee quantitation workflow into a new lfq-qc workflow and open

it.

• Place the QCCalculator node after the IDMapper node. Being inside the ZipLoop,

it will execute for each of the three mzML files the Input node.

• Connect the first QCCalculator port to the first ZipLoopStart outlet port, which

will carry the individual mzML files.

• Connect the last’s ID outlet port (IDFilter or the ID metanode) to the second

QCCalculator port for the identification file.

• Finally, connect the IDMapper outlet to the third QCCalculator port for the fea-

ture file.

The created qcML files will not have much to show for, basic as they are. So we

will extend them with some basic plots.

• First, we will add an 2D overview image of the given mass spectrometry run as

you may know it from TOPPView. Add the ImageCreatornode from Community Nodes
OpenMS Utilities . Change the width and heigth parameters to 640x640 as we

don’t want it to be too big. Connect it to the first ZipLoopStart outlet port, so

it will create an image file of the mzML’s contained run.

• Now we have to embed this file into the qcML file, and attach it to the right Qual-

ityParameter. For this, place a QCEmbedder node behind the ImageCreator and

connect that to its third inlet port. Connect its first inlet port to the outlet of the

QCCalculator node to pass on the qcML file. Now change the parameter cv_acc

toQC:0000055 which designates the attached image to be of type QC:0000055 -

MS experiment heatmap. Finally, change the parameterqp_att_acc toQC:0000004,

to attach the image to the QualityParameter QC:0000004 - MS acquisition result

details.

• For a reference of which CVs are already defined for qcML, have a look at
https://github.com/qcML/qcML-development/blob/master/cv/qc-cv.obo .
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There are two other basic plots which we almost always might want to look at be-

fore judging the quality of a mass spectrometry run and its identifications: the total

ion current (TIC) and the PSMmass error (Mass accuracy), which we have available as

pre-packaged QC metanodes.

Import the workflow from Workflows Quality Control QC Metanodes.zip

in KNIME: File Import KNIME Workflow...

Task

• Copy the Mass accuracy metanode into the workflow behind the QCEmbedder

node and connect it. The qcML will be passed on and the Mass accuracy plots

added. The information needed was already collected by the QCCalculator.

• Do the same with the TIC metanode so that your qcML file will get passed on

and enriched on each step.

R Dependencies: This section requires that the R packages ggplot2 and scales are

both installed. This is the same procedure as in section 6.4.5. In case that you use

an R installation where one or both of them are not yet installed, open the R Snippet

nodes inside the metanodes you just used (double-click). Edit the script in theR Script

text editor from:

#install.packages(”ggplot2”)
#install.packages(”scales”)

to

install.packages(”ggplot2”)
install.packages(”scales”)

Press Eval script to execute the script.

Note: To have a peek into what our qcML now looks like for one of the

ZipLoop iterations, we can add an Output Folder node from Community Nodes
GenericKnimeNodes IO and set its destination parameter to somewhere we

want to find our intermediate qcML files in, for example tmp qc_lfq . If

we now connect the last metanode with the Output Folder and restart the

workflow, we can start inspecting the qcML files.
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Figure 49: Basic QC setup within a LFQ workflow

Find your first created qcML file and open it with the browser (not IE),

and the contained QC parameters will be rendered for you.

Task

10.3 Adding brand new QC metrics

We can also add brand new QC metrics to our qcML files. Remember the Histogram

you added inside the ZipLoop during the label-free quantitation section? Let’s imag-

ine for a moment this was a brand new and utterly important metric and plot for the

assessment of your analyses quality. There is an easy way to integrate such new met-

rics into your qcMLs. Though the Histogram node cannot pass its plot to an image, we

can do so with a R View (table).

• Add an R View (table) next to the IDTextReader node and connect them.

• Edit the R View (table) by adding the R Script according to this:

#install.packages(”ggplot2”)
library(”ggplot2”)
ggplot(knime.in, aes(x=peptide_charge)) +
geom_histogram(binwidth=1, origin =-0.5) +
scale_x_discrete() +
ggtitle(”Identified peptides charge histogram”) +
ylab(”Count”)

• This will create a plot like the Histogram node on peptide_charge and pass it on

as an image.

• Now add and connect a Image2FilePortnode from Community Nodes GenericKnimeNodes
Flow to the R View (table).
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• We can now use a QCEmbedder node like before to add our new metric plot into

the qcML.

• After looking for an appropriate target in
https://github.com/qcML/qcML-development/blob/master/cv/qc-cv.obo , we found that we can

attach our plot to the MS identification result details by setting the parameter

qp_att_acc toQC:0000025, as we are plotting the charge histogram of our iden-

tified peptides.

• To have the plot later displayed properly, we assign it the parameter cv_acc of

QC:0000051, a generic plot. Also we made sure in the R Script, that our plot

carries a caption so that we know which is which, if we had more than one new

plot.

• Now we redirect the QCEmbedders output to the Output Folder from before and

can have a look at how our qcML is coming along after restarting the workflow.

Figure 50: QC with new metric
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10.4 Set QC metrics

Besides monitoring the quality of each individual mass spectrometry run analysis, an-

other capability of QC with OpenMS and qcML is to monitor the complete set. The

easiest control is to compare mass spectrometry runs which should be similar, e.g.

technical replicates, to spot any aberrations in the set.

For this, we will first collect all created qcML files, merge them together and use the

qcML onboard set QC properties to detect any outliers.

• connect the QCEmbedders output from last section to the ZipLoopEnds second

input port.

• The corresponding output port will collect all qcML files from each ZipLoop it-

eration and pass them on as a list of files.

• Now we add a QCMerger node after the ZipLoopEnd and feed it that list of qcML

files. In addition, we set its parameter setname to give our newly created set a

name - say spikein_replicates.

• To inspect all the QCs next to each other in that created qcML file, we have to

add a new Output Folder to which we can connect the QCMerger output.

When inspecting the set-qcML file in a browser, we will be presented another

overview. After the set content listing, the basic QC parameters (like number of iden-

tifications) are each displayed in a graph. Each set member (or run) has its own section

on the x-axis and each run is connected with that graph via a link in the mouseover on

one of the QC parameter values.
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Figure 51: QC set creation from ZipLoop

For ideas on new QC metrics and parameters -as you add them in your

qcML files as generic parameters, feel free to contact us, so we can in-

clude them in the CV.

Task
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11 Troubleshooting guide

This section will show you where you can turn to when you encounter any problems

with this tutorial or with our nodes in general. Please see the FAQ first. If your prob-

lem is not listed or the proposed solution does not work, feel free to leave us a mes-

sage at the means of support that you see most fit. If that is the case, please provide

us with as much information as you can. In an ideal case, that would be:

• Your operating system and its version (e.g. Windows 8, Ubuntu 14.04)

• Your KNIME version (e.g. KNIME 3.1.2 full, KNIME 3.1.1 core)

• If not full: Which update site did you use for the OpenMS plugin? Trunk (nightly-

builds) or Stable?

• Your OpenMS plugin version found under
Help Install New Software What is already installed?

• Other installations of OpenMS on your computer (e.g. from the independent

OpenMS installer, another KNIME instance etc.)

• The log of the error in KNIME and the standard output of the tool (see FAQ: How

to debug)

• Your description of what you tried to do and experienced instead

11.1 FAQ

11.1.1 How to debug KNIME and/or the OpenMS nodes?

• KNIME: Start with the normal log on the bottom right of KNIME. In general all

warnings and errors will be listed there. If the output is not helpful enough,

try to set the logging verbosity to the highest (DEBUG) under Preferences ->

KNIME -> Log file log level.

• OpenMS nodes: The first step should also be the log of KNIME. Additionally,

you can view the output and the errors of our tools by right-clicking on the node

and selecting
View: NODENAME Std Output/Error . This shows you the output of the OpenMS exe-

cutable that was called by that node. For advanced users, you can try to execute

the underlying executable in your
KNIME/plugins/de.openms.platform.arch.version/payload/bin folder, to see if the error is re-

producible outside of KNIME.
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You can look up temporary files that are created by OpenMS nodes not con-

nected to an Output or Viewer Node by right- clicking on a node and selecting

the corresponding output view for the output you want to have a look at. The

output views are located on the bottom of the menu that shows up after right-

clicking. Their icon is a magnifying glass on top of a data table. The names of the

output views in that menu may vary from node to node (usually a combination

of ”file”,”out”,”output” and optionally its possible extensions). For example for

the Input File node you can open the information on the output files by click-

ing on ”loaded file”. In any case, a hierarchy of file descriptions will show up. If

there are multiple files on that port they will be numbered (usually beginning

from 0). Expand the information for the file you want to see and copy its URI

(you might need to erase the ”file:” prefix). Now open it with an editor of your

choice. Be aware that temporary files are subject to deletion and are usually

only stored as long as they are actually needed. There is also a Debug mode for

the GKN nodes that keeps temporary files that can be activated under Prefer-

ences -> KNIME -> Generic KNIME Nodes -> Debug mode. For the single nodes

you can also increase the debug level in the configuration dialog under the ad-

vanced parameters. You can also specify a log file there, to save the log output

of a specific node on your file system.

11.1.2 General

Q: Can I add my own modifications to the Unimod.xml?

A: Unfortunately not very easy. This is an open issue since the selections are hard-

coded during creation of the tools. We included 10 places for dummy modifications

that can be entered in our Unimod.xml and selected in KNIME.

Q: I have problem XYZ but it also occurs with other nodes or generally in the KNIME

environment/GUI, what should I do?

A: This sounds like a general KNIME bug and we advise to search help directly at the

KNIME developers. They also provide a FAQ and a forum.

Q: After exporting and reading in results into a KNIME table (e.g. with a MzTabEx-

porter and MzTabReader combination) numeric values get rounded (e.g. from scien-

tific notation 4.5e-10 to zero) or are in a different representation than in the under-

lying exported file!

A: Please try a different table column renderer in KNIME. Open the table in question,

right-click on the header of an affected column and select another Available Renderer

by hovering and finally left-clicking.
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Q: I have checked all the configurations but KNIME complains that it can not find cer-

tain output Files (FileStoreObjects).

A: Sometimes KNIME/GKN has hiccups with multiple nodes with a same name, exe-

cuted at the same time in the same loop. We have seen that a simple save and restart

of KNIME usually solves the problem.

11.1.3 Platform-specific problems

Linux

Q: Whenever I try to execute an OpenMS node I get an error similar to these:

/usr/lib/x86_64-linux-gnu/libgomp.so.1: version `GOMP_4.0' not found

/usr/lib/x86_64-linux-gnu/libstdc++.so.6: version `GLIBCXX_3.4.20' not found

A: We currently build the binaries shipped in the OpenMS KNIME plugin with gcc 4.8.

We will try to extend our support for older compilers. Until then you either need

to upgrade your gcc compiler or at least the library that the tool complained about

or you need to build the binaries yourself (see OpenMS documentation) and replace

them in your KNIME binary folder

( YOURKNIMEFOLDER/plugins/de.openms.platform.architecture.version/payload/bin ).

Q: Why is my configuration dialog closing right away when I double-click or try to

configure it? Or why is my GUI responding so slow?

A: If you have any problems with the KNIME GUI or the opening of dialogues under

Linux you might be affected by a GTK bug. See the KNIME forum (e.g. here or here)

for a discussion and a possible solution. In short: set environment variable by calling

export SWT_GTK3=0 or edit knime.ini to make Eclipse use GTK2 by adding the follow-

ing two lines:

–launcher.GTK_version

2

macOS

Q: I have problems installing RServe in my local R installation for the R KNIME Exten-

sion:

A: If you encounter linker errors while running install.packages(”Rserve”) when using

an R installation from homebrew, make sure gettext is installed via homebrew and

you pass flags to its lib directory. See StackOverflow question 21370363.

Q: Although I Ctrl + Leftclick TOPPAS.app or TOPPView.app and accept the risk of a

downloaded application, the icon only shortly blinks and nothing happens:
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A: It seems like your OS is not able to remove the quarantine flag. If you trust us,

please remove it yourself by typing the following command in your Terminal.app:
xattr -r -d com.apple.quarantine /Applications/OpenMS-2.7.0

Windows

Q: KNIME has problems getting the requirements for some of the OpenMS nodes on

Windows, what can I do?

A: Get the prerequisites installer here or install .NET3.5, .NET4 and VCRedist10.0 and

12.0 yourself.

11.1.4 Nodes

Q:Why is my XTandemAdapter printing empty or VERY few results, although I did not

use an e-value cutoff?

A: Due to a bug in OpenMS 2.0.1 the XTandemAdapter requires a default parameter

file. Give it the default configuration in
YOURKNIMEFOLDER/plugins/de.openms.platform.architecture.version/payload/share/
CHEMISTRY/XTandem_default_input.xml as a third input file. This should be resolved in

newer versions though, such that it automatically uses this file if the optional inputs

is empty. This should be solved in newer versions.

Q: Do MSGFPlusAdapter, LuciphorAdapter or SiriusAdapter generally behave differ-

ent/unexpected?

A: These are Java processes that are started underneath. For example they can not

be killed during cancellation of the node. This should not affect its performance,

however. Make sure you set the Java memory parameter in these nodes to a reason-

able value. Also MSGFPlus is creating several auxiliary files and accesses them during

execution. Some users therefore experienced problems when executing several in-

stances at the same time.

11.2 Sources of support

If your questions could not be answered by the FAQ, please feel free to turn to our

developers via one of the following means:

• File an issue on GitHub

• Write to the Mailing List

• Open a thread on the KNIME Community Contributions forum for OpenMS
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