Main Page | Modules | Namespace List | Class Hierarchy | Class List | Namespace Members | Class Members

VertexAdjacencyEquality Class Reference

The vertex adjacency equality si calculateed using the formula: \(-(1-f) (1-f) - f f \), where $f$ is defined as: \( f = {(n^2 -2m)}{n^2}\), where $n$ is the number of heavy atoms and $m$ is the number of heavy bonds. More...

#include <simpleDescriptors.h>

Inheritance diagram for VertexAdjacencyEquality:

SimpleBase Descriptor UnaryProcessor< AtomContainer > UnaryFunctor< AtomContainer, Processor::Result > List of all members.

Public Member Functions

Constructors and Destructors
 VertexAdjacencyEquality ()
 Default constructor.
 VertexAdjacencyEquality (const VertexAdjacencyEquality &vae)
 Copy constructor.
virtual ~VertexAdjacencyEquality ()
 Destructor.
Assignment
VertexAdjacencyEqualityoperator= (const VertexAdjacencyEquality &vae)
 Assignment operator.
Accessors
double compute (AtomContainer &ac)

Detailed Description

The vertex adjacency equality si calculateed using the formula: \(-(1-f) (1-f) - f f \), where $f$ is defined as: \( f = {(n^2 -2m)}{n^2}\), where $n$ is the number of heavy atoms and $m$ is the number of heavy bonds.

If $f$ is not in $(0,1)$ then $0$ is returned.