BALL::QSAR::NBModel Class Reference

#include <BALL/QSAR/nBModel.h>

Inheritance diagram for BALL::QSAR::NBModel:
Inheritance graph
[legend]

List of all members.

Public Member Functions

Constructors and Destructors

 NBModel (const QSARData &q)
 ~NBModel ()
Accessors

void train ()
Vector< doublepredict (const vector< double > &substance, bool transform=1)
void saveToFile (string filename)
void readFromFile (string filename)
vector< doublegetParameters () const
void setParameters (vector< double > &v)
bool isTrained ()
vector< doublecalculateProbabilities (int activitiy_index, int feature_index, double feature_value)
int getNoResponseVariables ()

Private Attributes

Attributes

uint discretization_steps_
Matrix< doublemin_max_
vector< vector< Matrix< double > > > probabilities_

Detailed Description

class for Naive Bayes

Definition at line 43 of file nBModel.h.


Constructor & Destructor Documentation

BALL::QSAR::NBModel::NBModel ( const QSARData q  ) 
BALL::QSAR::NBModel::~NBModel (  ) 

Member Function Documentation

vector<double> BALL::QSAR::NBModel::calculateProbabilities ( int  activitiy_index,
int  feature_index,
double  feature_value 
) [virtual]

calculate the probability for the specified feature to assume the given value for each class

Returns:
a probability for each class

Implements BALL::QSAR::BayesModel.

int BALL::QSAR::NBModel::getNoResponseVariables (  )  [virtual]

returns the number of response variables for which this model has been trained

Implements BALL::QSAR::BayesModel.

vector<double> BALL::QSAR::NBModel::getParameters (  )  const [virtual]

Reimplemented from BALL::QSAR::Model.

bool BALL::QSAR::NBModel::isTrained (  )  [virtual]
Vector<double> BALL::QSAR::NBModel::predict ( const vector< double > &  substance,
bool  transform = 1 
) [virtual]

Predicts the activities of a given substance

Parameters:
substance the substance which activity is to be predicted in form of a vecor containing the values for *all* descriptors (if neccessary, relevant descriptors will be selected automatically)
transform determines whether the values for each descriptor of the given substance should be transformed before prediction of activity.
If (transform==1): each descriptor value is transformed according to the centering of the respective column of QSARData.descriptor_matrix used to train this model.
If the substance to be predicted is part of the same input data (e.g. same SD-file) as the training data (as is the case during cross validation), transform should therefore be set to 0.
Returns:
a RowVector containing one value for each predicted activity

Implements BALL::QSAR::Model.

void BALL::QSAR::NBModel::readFromFile ( string  filename  )  [virtual]

reconstruct a saved Model from a file

Implements BALL::QSAR::Model.

void BALL::QSAR::NBModel::saveToFile ( string  filename  )  [virtual]

save Model to a file

Implements BALL::QSAR::Model.

void BALL::QSAR::NBModel::setParameters ( vector< double > &   )  [virtual]

sets the model parameters according to the given values.

Reimplemented from BALL::QSAR::Model.

void BALL::QSAR::NBModel::train (  )  [virtual]

Starts training the model.

Implements BALL::QSAR::Model.


Member Data Documentation

Definition at line 83 of file nBModel.h.

the minmum (row1) and maximum (row2) of each feature.

Definition at line 87 of file nBModel.h.

vector<vector<Matrix<double> > > BALL::QSAR::NBModel::probabilities_ [private]

One probability Matrix for each modelled activity and each class.
Each Matrix stores in each cell the probability for a feature lying within a specific range to be in a specific class

Definition at line 91 of file nBModel.h.

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Defines
Generated by  doxygen 1.6.3