OpenMS  2.7.0
Public Member Functions | Private Member Functions | List of all members
FalseDiscoveryRate Class Reference

Calculates false discovery rates (FDR) from identifications. More...

#include <OpenMS/ANALYSIS/ID/FalseDiscoveryRate.h>

Inheritance diagram for FalseDiscoveryRate:
[legend]
Collaboration diagram for FalseDiscoveryRate:
[legend]

Public Member Functions

 FalseDiscoveryRate ()
 Default constructor. More...
 
void apply (std::vector< PeptideIdentification > &fwd_ids, std::vector< PeptideIdentification > &rev_ids) const
 Calculates the FDR of two runs, a forward run and a decoy run on peptide level. More...
 
void apply (std::vector< PeptideIdentification > &id) const
 Calculates the FDR of one run from a concatenated sequence DB search. More...
 
void apply (std::vector< ProteinIdentification > &fwd_ids, std::vector< ProteinIdentification > &rev_ids) const
 Calculates the FDR of two runs, a forward run and decoy run on protein level. More...
 
void apply (std::vector< ProteinIdentification > &ids) const
 Calculate the FDR of one run from a concatenated sequence db search. More...
 
void applyEstimated (std::vector< ProteinIdentification > &ids) const
 Calculate the FDR based on PEPs or PPs (if present) and modifies the IDs inplace. More...
 
double applyEvaluateProteinIDs (const std::vector< ProteinIdentification > &ids, double pepCutoff=1.0, UInt fpCutoff=50, double diffWeight=0.2)
 Calculate a linear combination of the area of the difference in estimated vs. empirical (TD) FDR and the ROC-N value (AUC up to first N false positives). More...
 
double applyEvaluateProteinIDs (const ProteinIdentification &ids, double pepCutoff=1.0, UInt fpCutoff=50, double diffWeight=0.2)
 
double applyEvaluateProteinIDs (ScoreToTgtDecLabelPairs &score_to_tgt_dec_fraction_pairs, double pepCutoff=1.0, UInt fpCutoff=50, double diffWeight=0.2)
 
void applyBasic (std::vector< PeptideIdentification > &ids)
 simpler reimplementation of the apply function above. More...
 
void applyBasic (ConsensusMap &cmap, bool use_unassigned_peptides=true)
 simpler reimplementation of the apply function above for peptides in ConsensusMaps. More...
 
void applyBasic (ProteinIdentification &id, bool groups_too=true)
 simpler reimplementation of the apply function above for proteins. More...
 
double rocN (const std::vector< PeptideIdentification > &ids, Size fp_cutoff) const
 
double rocN (const std::vector< PeptideIdentification > &ids, Size fp_cutoff, const String &identifier) const
 
double rocN (const ConsensusMap &ids, Size fp_cutoff) const
 
double rocN (const ConsensusMap &ids, Size fp_cutoff, const String &identifier) const
 
double diffEstimatedEmpirical (const ScoreToTgtDecLabelPairs &scores_labels, double pepCutoff=1.0) const
 calculates the area of the difference between estimated and empirical FDR on the fly. Does not store results. More...
 
double rocN (const ScoreToTgtDecLabelPairs &scores_labels, Size fpCutoff=50) const
 
IdentificationData::ScoreTypeRef applyToQueryMatches (IdentificationData &id_data, IdentificationData::ScoreTypeRef score_ref) const
 Calculate FDR on the level of molecule-query matches (e.g. peptide-spectrum matches) for "general" identification data. More...
 
- Public Member Functions inherited from DefaultParamHandler
 DefaultParamHandler (const String &name)
 Constructor with name that is displayed in error messages. More...
 
 DefaultParamHandler (const DefaultParamHandler &rhs)
 Copy constructor. More...
 
virtual ~DefaultParamHandler ()
 Destructor. More...
 
virtual DefaultParamHandleroperator= (const DefaultParamHandler &rhs)
 Assignment operator. More...
 
virtual bool operator== (const DefaultParamHandler &rhs) const
 Equality operator. More...
 
void setParameters (const Param &param)
 Sets the parameters. More...
 
const ParamgetParameters () const
 Non-mutable access to the parameters. More...
 
const ParamgetDefaults () const
 Non-mutable access to the default parameters. More...
 
const StringgetName () const
 Non-mutable access to the name. More...
 
void setName (const String &name)
 Mutable access to the name. More...
 
const std::vector< String > & getSubsections () const
 Non-mutable access to the registered subsections. More...
 

Private Member Functions

 FalseDiscoveryRate (const FalseDiscoveryRate &)
 Not implemented. More...
 
FalseDiscoveryRateoperator= (const FalseDiscoveryRate &)
 Not implemented. More...
 
void calculateFDRs_ (std::map< double, double > &score_to_fdr, std::vector< double > &target_scores, std::vector< double > &decoy_scores, bool q_value, bool higher_score_better) const
 calculates the FDR, given two vectors of scores More...
 
void handleQueryMatch_ (IdentificationData::QueryMatchRef match_ref, IdentificationData::ScoreTypeRef score_ref, std::vector< double > &target_scores, std::vector< double > &decoy_scores, std::map< IdentificationData::IdentifiedMoleculeRef, bool > &molecule_to_decoy, std::map< IdentificationData::QueryMatchRef, double > &match_to_score) const
 Helper function for applyToQueryMatches() More...
 
void calculateEstimatedQVal_ (std::map< double, double > &scores_to_FDR, ScoreToTgtDecLabelPairs &scores_labels, bool higher_score_better) const
 
void calculateFDRBasic_ (std::map< double, double > &scores_to_FDR, ScoreToTgtDecLabelPairs &scores_labels, bool qvalue, bool higher_score_better) const
 
double trapezoidal_area_xEqy (double exp1, double exp2, double act1, double act2) const
 
double trapezoidal_area (double x1, double x2, double y1, double y2) const
 calculates the trapezoidal area for a trapezoid with a flat horizontal base e.g. for an AUC More...
 

Additional Inherited Members

- Static Public Member Functions inherited from DefaultParamHandler
static void writeParametersToMetaValues (const Param &write_this, MetaInfoInterface &write_here, const String &prefix="")
 Writes all parameters to meta values. More...
 
- Protected Member Functions inherited from DefaultParamHandler
virtual void updateMembers_ ()
 This method is used to update extra member variables at the end of the setParameters() method. More...
 
void defaultsToParam_ ()
 Updates the parameters after the defaults have been set in the constructor. More...
 
- Protected Attributes inherited from DefaultParamHandler
Param param_
 Container for current parameters. More...
 
Param defaults_
 Container for default parameters. This member should be filled in the constructor of derived classes! More...
 
std::vector< Stringsubsections_
 Container for registered subsections. This member should be filled in the constructor of derived classes! More...
 
String error_name_
 Name that is displayed in error messages during the parameter checking. More...
 
bool check_defaults_
 If this member is set to false no checking if parameters in done;. More...
 
bool warn_empty_defaults_
 If this member is set to false no warning is emitted when defaults are empty;. More...
 

Detailed Description

Calculates false discovery rates (FDR) from identifications.

Either two runs of forward and decoy database identification or one run containing both (with annotations) can be used to annotate each of the peptide hits with an FDR or q-value.

q-values are basically only adjusted p-values, also ranging from 0 to 1, with lower values being preferable. When looking at the list of hits ordered by q-values, then a specific q-value of x means that x*100 percent of hits with a q-value <= x are expected to be false positives.

Only simple target-decoy FDRs are supported with a formula depending on the "conservative" parameter:

For peptide hits, a hit is considered target also if it maps to both a target and a decoy protein (i.e. "target+decoy") as value in the "target_decoy" metavalue e.g. annotated by PeptideIndexer

Note
The parameter add_decoy_proteins currently does not affect groups
Parameters of this class are:

NameTypeDefaultRestrictionsDescription
no_qvalues stringfalse true, falseIf 'true' strict FDRs will be calculated instead of q-values (the default)
use_all_hits stringfalse true, falseIf 'true' not only the first hit, but all are used (peptides only)
split_charge_variants stringfalse true, falseIf 'true' charge variants are treated separately (for peptides of combined target/decoy searches only).
treat_runs_separately stringfalse true, falseIf 'true' different search runs are treated separately (for peptides of combined target/decoy searches only).
add_decoy_peptides stringfalse true, falseIf 'true' decoy peptides will be written to output file, too. The q-value is set to the closest target score.
add_decoy_proteins stringfalse true, falseIf 'true' decoy proteins will be written to output file, too. The q-value is set to the closest target score.
conservative stringtrue true, falseIf 'true' (D+1)/T instead of (D+1)/(T+D) is used as a formula.

Note:

Constructor & Destructor Documentation

◆ FalseDiscoveryRate() [1/2]

Default constructor.

◆ FalseDiscoveryRate() [2/2]

FalseDiscoveryRate ( const FalseDiscoveryRate )
private

Not implemented.

Member Function Documentation

◆ apply() [1/4]

void apply ( std::vector< PeptideIdentification > &  fwd_ids,
std::vector< PeptideIdentification > &  rev_ids 
) const

Calculates the FDR of two runs, a forward run and a decoy run on peptide level.

Parameters
fwd_idsforward peptide identifications
rev_idsreverse peptide identifications

◆ apply() [2/4]

void apply ( std::vector< PeptideIdentification > &  id) const

Calculates the FDR of one run from a concatenated sequence DB search.

Parameters
idpeptide identifications, containing target and decoy hits

◆ apply() [3/4]

void apply ( std::vector< ProteinIdentification > &  fwd_ids,
std::vector< ProteinIdentification > &  rev_ids 
) const

Calculates the FDR of two runs, a forward run and decoy run on protein level.

Parameters
fwd_idsforward protein identifications
rev_idsreverse protein identifications

◆ apply() [4/4]

void apply ( std::vector< ProteinIdentification > &  ids) const

Calculate the FDR of one run from a concatenated sequence db search.

Parameters
idsprotein identifications, containing target and decoy hits

◆ applyBasic() [1/3]

void applyBasic ( ConsensusMap cmap,
bool  use_unassigned_peptides = true 
)

simpler reimplementation of the apply function above for peptides in ConsensusMaps.

◆ applyBasic() [2/3]

void applyBasic ( ProteinIdentification id,
bool  groups_too = true 
)

simpler reimplementation of the apply function above for proteins.

◆ applyBasic() [3/3]

void applyBasic ( std::vector< PeptideIdentification > &  ids)

simpler reimplementation of the apply function above.

◆ applyEstimated()

void applyEstimated ( std::vector< ProteinIdentification > &  ids) const

Calculate the FDR based on PEPs or PPs (if present) and modifies the IDs inplace.

Parameters
idsprotein identifications, containing PEP scores (not necessarily) annotated with target decoy.

◆ applyEvaluateProteinIDs() [1/3]

double applyEvaluateProteinIDs ( const ProteinIdentification ids,
double  pepCutoff = 1.0,
UInt  fpCutoff = 50,
double  diffWeight = 0.2 
)

◆ applyEvaluateProteinIDs() [2/3]

double applyEvaluateProteinIDs ( const std::vector< ProteinIdentification > &  ids,
double  pepCutoff = 1.0,
UInt  fpCutoff = 50,
double  diffWeight = 0.2 
)

Calculate a linear combination of the area of the difference in estimated vs. empirical (TD) FDR and the ROC-N value (AUC up to first N false positives).

Parameters
idsprotein identifications, containing PEP scores annotated with target decoy. If vector, only first will be evaluated-
pepCutoffup to which PEP should the differences between the two FDRs be calculated
fpCutoffup to which nr. of false positives should the target-decoy AUC be evaluated
diffWeightwhich weight should the difference get. The ROC-N value gets 1 - this weight.

◆ applyEvaluateProteinIDs() [3/3]

double applyEvaluateProteinIDs ( ScoreToTgtDecLabelPairs score_to_tgt_dec_fraction_pairs,
double  pepCutoff = 1.0,
UInt  fpCutoff = 50,
double  diffWeight = 0.2 
)

◆ applyToQueryMatches()

IdentificationData::ScoreTypeRef applyToQueryMatches ( IdentificationData id_data,
IdentificationData::ScoreTypeRef  score_ref 
) const

Calculate FDR on the level of molecule-query matches (e.g. peptide-spectrum matches) for "general" identification data.

Parameters
id_dataIdentification data
score_keyKey of the score to use for FDR calculation
Returns
Key of the FDR score

Referenced by NucleicAcidSearchEngine::calculateAndFilterFDR_().

◆ calculateEstimatedQVal_()

void calculateEstimatedQVal_ ( std::map< double, double > &  scores_to_FDR,
ScoreToTgtDecLabelPairs scores_labels,
bool  higher_score_better 
) const
private

calculates an estimated FDR (based on P(E)Ps) given a vector of score value pairs and fills a map for lookup in scores_to_FDR

◆ calculateFDRBasic_()

void calculateFDRBasic_ ( std::map< double, double > &  scores_to_FDR,
ScoreToTgtDecLabelPairs scores_labels,
bool  qvalue,
bool  higher_score_better 
) const
private

calculates the FDR with a basic and faster algorithm Just goes through the sorted scores and counts the number of decoys and targets and annotates the FDR for this score as it goes. Q-values are optionally annotated by calculating the cumulative minimum in reversed order afterwards. Since I never understood our other algorithm, I can not explain the difference.

Note
Formula used depends on Param "conservative": false -> (D+1)/T, true (e.g. used in Fido) -> (D+1)/(T+D)

◆ calculateFDRs_()

void calculateFDRs_ ( std::map< double, double > &  score_to_fdr,
std::vector< double > &  target_scores,
std::vector< double > &  decoy_scores,
bool  q_value,
bool  higher_score_better 
) const
private

calculates the FDR, given two vectors of scores

◆ diffEstimatedEmpirical()

double diffEstimatedEmpirical ( const ScoreToTgtDecLabelPairs scores_labels,
double  pepCutoff = 1.0 
) const

calculates the area of the difference between estimated and empirical FDR on the fly. Does not store results.

◆ handleQueryMatch_()

void handleQueryMatch_ ( IdentificationData::QueryMatchRef  match_ref,
IdentificationData::ScoreTypeRef  score_ref,
std::vector< double > &  target_scores,
std::vector< double > &  decoy_scores,
std::map< IdentificationData::IdentifiedMoleculeRef, bool > &  molecule_to_decoy,
std::map< IdentificationData::QueryMatchRef, double > &  match_to_score 
) const
private

Helper function for applyToQueryMatches()

◆ operator=()

FalseDiscoveryRate& operator= ( const FalseDiscoveryRate )
private

Not implemented.

◆ rocN() [1/5]

double rocN ( const ConsensusMap ids,
Size  fp_cutoff 
) const

calculates the AUC until the first fp_cutoff False positive pep IDs (currently only takes all runs together) if fp_cutoff = 0, it will calculate the full AUC

◆ rocN() [2/5]

double rocN ( const ConsensusMap ids,
Size  fp_cutoff,
const String identifier 
) const

calculates the AUC until the first fp_cutoff False positive pep IDs (currently only takes all runs together) if fp_cutoff = 0, it will calculate the full AUC. Restricted to IDs from a specific ID run.

◆ rocN() [3/5]

double rocN ( const ScoreToTgtDecLabelPairs scores_labels,
Size  fpCutoff = 50 
) const

calculates AUC of empirical FDR up to the first fpCutoff false positives on the fly. Does not store results. use e.g. fpCutoff = scores_labels.size() for complete AUC

◆ rocN() [4/5]

double rocN ( const std::vector< PeptideIdentification > &  ids,
Size  fp_cutoff 
) const

calculates the AUC until the first fp_cutoff False positive pep IDs (currently only takes all runs together) if fp_cutoff = 0, it will calculate the full AUC

◆ rocN() [5/5]

double rocN ( const std::vector< PeptideIdentification > &  ids,
Size  fp_cutoff,
const String identifier 
) const

calculates the AUC until the first fp_cutoff False positive pep IDs (currently only takes all runs together) if fp_cutoff = 0, it will calculate the full AUC. Restricted to IDs from a specific ID run.

◆ trapezoidal_area()

double trapezoidal_area ( double  x1,
double  x2,
double  y1,
double  y2 
) const
private

calculates the trapezoidal area for a trapezoid with a flat horizontal base e.g. for an AUC

◆ trapezoidal_area_xEqy()

double trapezoidal_area_xEqy ( double  exp1,
double  exp2,
double  act1,
double  act2 
) const
private

calculates the error area around the x=x line between two consecutive values of expected and actual i.e. it assumes exp2 > exp1