41 #include <boost/bimap.hpp>
42 #include <boost/bimap/multiset_of.hpp>
74 typedef boost::bimap<double, boost::bimaps::multiset_of<double> >
86 double lm = intercept + rt_coef * diff_rt * diff_rt +
88 return 1.0 / (1.0 + exp(-lm));
100 return (rt - min_rt) / (max_rt - min_rt) * 100;
137 double feature_rt,
DoubleList& feature_intensities,
138 const std::set<String>& transition_ids = std::set<String>());
148 n_decoys_ = n_decoys;
149 n_transitions_ = n_transitions;
150 rt_trafo_ = rt_trafo;
155 glm_.intercept = intercept;
156 glm_.rt_coef = rt_coef;
157 glm_.int_coef = int_coef;
179 "There need to be at least 2 assays in the library for ConfidenceScoring.");
182 if (n_assays - 1 < n_decoys_)
185 <<
") is higher than the number of unrelated assays in the "
186 <<
"library (" << n_assays - 1 <<
"). "
187 <<
"Using all unrelated assays as decoys." << std::endl;
189 if (n_assays - 1 <= n_decoys_) n_decoys_ = 0;
191 decoy_index_.resize(n_assays);
192 for (
Size i = 0; i < n_assays; ++i) decoy_index_[i] = boost::numeric_cast<Int>(i);
199 transition_map_[ref].push_back(boost::numeric_cast<Int>(i));
203 rt_norm_.min_rt = std::numeric_limits<double>::infinity();
204 rt_norm_.max_rt = -std::numeric_limits<double>::infinity();
205 for (std::vector<TargetedExperiment::Peptide>::const_iterator it =
209 double current_rt = getAssayRT_(*it);
210 if (current_rt == -1.0)
continue;
211 rt_norm_.min_rt = std::min(rt_norm_.min_rt, current_rt);
212 rt_norm_.max_rt = std::max(rt_norm_.max_rt, current_rt);
217 startProgress(0, features.size(),
"scoring features");
220 feat_it != features.end(); ++feat_it)
223 <<
" (ID '" << feat_it->
getUniqueId() <<
"')"<< std::endl;
224 scoreFeature_(*feat_it);
225 setProgress(feat_it - features.begin());
#define OPENMS_LOG_DEBUG
Macro for general debugging information.
Definition: LogStream.h:470
#define OPENMS_LOG_WARN
Macro if a warning, a piece of information which should be read by the user, should be logged.
Definition: LogStream.h:460
Definition: ConfidenceScoring.h:59
double scoreAssay_(const TargetedExperiment::Peptide &assay, double feature_rt, DoubleList &feature_intensities, const std::set< String > &transition_ids=std::set< String >())
void scoreMap(FeatureMap &features)
Score a feature map -> make sure the class is properly initialized.
Definition: ConfidenceScoring.h:172
void chooseDecoys_()
Randomize the list of decoy indexes.
TargetedExperiment library_
assay library
Definition: ConfidenceScoring.h:104
Math::RandomShuffler shuffler_
random shuffler for container
Definition: ConfidenceScoring.h:117
IntList decoy_index_
indexes of assays to use as decoys
Definition: ConfidenceScoring.h:106
Size n_decoys_
number of decoys to use (per feature/true assay)
Definition: ConfidenceScoring.h:108
double getAssayRT_(const TargetedExperiment::Peptide &assay)
Get the retention time of an assay.
virtual ~ConfidenceScoring()
Definition: ConfidenceScoring.h:69
TransformationDescription rt_trafo_
RT transformation to map measured RTs to assay RTs.
Definition: ConfidenceScoring.h:115
void extractIntensities_(BimapType &intensity_map, Size n_transitions, DoubleList &intensities)
boost::bimap< double, boost::bimaps::multiset_of< double > > BimapType
Mapping: Q3 m/z <-> transition intensity (maybe not unique!)
Definition: ConfidenceScoring.h:75
double manhattanDist_(DoubleList x, DoubleList y)
Manhattan distance.
Map< String, IntList > transition_map_
assay (ID) -> transitions (indexes)
Definition: ConfidenceScoring.h:110
ConfidenceScoring(bool test_mode_=false)
Constructor.
Definition: ConfidenceScoring.h:63
void scoreFeature_(Feature &feature)
Score a feature.
void initializeGlm(double intercept, double rt_coef, double int_coef)
Definition: ConfidenceScoring.h:153
Size n_transitions_
number of transitions to consider
Definition: ConfidenceScoring.h:112
void initialize(const TargetedExperiment &library, const Size n_decoys, const Size n_transitions, const TransformationDescription &rt_trafo)
Definition: ConfidenceScoring.h:145
A method or algorithm argument contains illegal values.
Definition: Exception.h:656
A container for features.
Definition: FeatureMap.h:105
Base::iterator Iterator
Definition: FeatureMap.h:143
An LC-MS feature.
Definition: Feature.h:72
Map class based on the STL map (containing several convenience functions)
Definition: Map.h:52
Definition: MathFunctions.h:352
Base class for all classes that want to report their progress.
Definition: ProgressLogger.h:55
A more convenient string class.
Definition: String.h:61
Represents a peptide (amino acid sequence)
Definition: TargetedExperimentHelper.h:360
A description of a targeted experiment containing precursor and production ions.
Definition: TargetedExperiment.h:65
const std::vector< Peptide > & getPeptides() const
const std::vector< ReactionMonitoringTransition > & getTransitions() const
returns the transition list
UInt64 getUniqueId() const
Non-mutable access to unique id - returns the unique id.
Definition: UniqueIdInterface.h:105
size_t Size
Size type e.g. used as variable which can hold result of size()
Definition: Types.h:127
std::vector< Int > IntList
Vector of signed integers.
Definition: ListUtils.h:55
std::vector< double > DoubleList
Vector of double precision real types.
Definition: ListUtils.h:62
Main OpenMS namespace.
Definition: FeatureDeconvolution.h:47
Binomial GLM.
Definition: ConfidenceScoring.h:79
double rt_coef
Definition: ConfidenceScoring.h:81
double int_coef
Definition: ConfidenceScoring.h:82
double intercept
Definition: ConfidenceScoring.h:80
double operator()(double diff_rt, double dist_int)
Definition: ConfidenceScoring.h:84
Helper for RT normalization (range 0-100)
Definition: ConfidenceScoring.h:94
double operator()(double rt)
Definition: ConfidenceScoring.h:98
double min_rt
Definition: ConfidenceScoring.h:95
double max_rt
Definition: ConfidenceScoring.h:96