|
void | countIntensities_ (const PeakSpectrum &spectrum, const AASequence &annotation, const IonType &type, std::map< std::pair< IonType, Size >, std::vector< double > > &observed_intensities, double tolerance, Size number_of_regions) |
| stores the observed intensities for each sector-type combination in a vector More...
|
|
void | trainSecondaryTypes_ (TextFile &info_outfile, Size number_of_regions, Size number_of_intensity_levels, ObservedIntensMap &observed_intensities, const std::vector< IonType > &ion_types, const std::vector< bool > &is_primary) |
| trains the Bayesian secondary peak types models More...
|
|
Train SVM models that are used by SvmTheoreticalSpectrumGenerator.
Parameters of this class are:
Name | Type | Default | Restrictions | Description |
write_training_files |
string | false |
true, false | If set to true no models are trained but files (__training.dat) are produced for the selected primary ion types. They can be used as input for LibSVM command line tools |
number_intensity_levels |
int | 7 |
| The number of intensity bins (for secondary type models) |
number_regions |
int | 3 |
| The number of regions each spectrum is split to (for secondary type models) |
parent_tolerance |
float | 2.5 |
| The maximum difference between theoretical and experimental parent mass to accept training spectrum |
peak_tolerance |
float | 0.5 |
| The maximum mass error for a peak to the expected mass of some ion type |
add_b_ions |
string | true |
true, false | Train simulator for b-ions |
add_y_ions |
string | true |
true, false | Train simulator for y-ions |
add_a_ions |
string | false |
true, false | Train simulator for a-ions |
add_c_ions |
string | false |
true, false | Train simulator for c-ions |
add_x_ions |
string | false |
true, false | Train simulator for x-ions |
add_z_ions |
string | false |
true, false | Train simulator for z-ions |
add_losses |
string | false |
true, false | Train simulator for neutral losses of H2O and NH3 for b-ions and y-ions |
add_b2_ions |
string | false |
true, false | Train simulator for doubly charged b-ions |
add_y2_ions |
string | false |
true, false | Train simulator for double charged y-ions |
svm:svc_type |
int | 0 |
min: 0 max: 1 | Type of the SVC: 0=C_SVC 1=NU_SVC |
svm:svr_type |
int | 1 |
min: 0 max: 1 | Type of the SVR: 0=EPSILON_SVR 1=NU_SVR |
svm:scaling |
string | true |
true, false | Apply scaling of feature values |
svm:scaling_lower |
float | 0.0 |
| Lower bound for scaling |
svm:scaling_upper |
float | 1.0 |
| Upper bound for scaling |
svm:n_fold |
int | 5 |
min: 1 | n_fold cross validation is performed |
svm:grid |
string | false |
true, false | Perform grid search |
svm:additive_cv |
string | false |
true, false | Additive step size (if false multiplicative) |
svm:svc:kernel_type |
int | 2 |
min: 0 max: 3 | Type of the kernel: 0=LINEAR 1=POLY 2=RBF 3=SIGMOID |
svm:svc:degree |
int | 3 |
min: 1 | For POLY |
svm:svc:gamma |
float | 0.0 |
min: 0.0 | For POLY/RBF/SIGMOID |
svm:svc:C |
float | 1.0 |
| Cost of constraint violation |
svm:svc:nu |
float | 0.5 |
| For NU_SVC, ONE_CLASS and NU_SVR |
svm:svc:balancing |
string | true |
true, false | Use class balanced SVC training |
svm:svc:degree_start |
int | 1 |
min: 1 | starting point of degree |
svm:svc:degree_step_size |
int | 2 |
| step size point of degree |
svm:svc:degree_stop |
int | 4 |
| stopping point of degree |
svm:svc:gamma_start |
float | 1.0e-05 |
min: 0.0 max: 1.0 | starting point of gamma |
svm:svc:gamma_step_size |
int | 100 |
| step size point of gamma |
svm:svc:gamma_stop |
float | 0.1 |
| stopping point of gamma |
svm:svc:c_start |
float | 0.1 |
| starting point of c |
svm:svc:c_step_size |
int | 100 |
| step size of c |
svm:svc:c_stop |
int | 1000 |
| stopping point of c |
svm:svc:nu_start |
float | 0.3 |
min: 0.0 max: 1.0 | starting point of nu |
svm:svc:nu_step_size |
int | 2 |
| step size of nu |
svm:svc:nu_stop |
float | 0.6 |
min: 0.0 max: 1.0 | stopping point of nu |
svm:svr:kernel_type |
int | 2 |
min: 0 max: 3 | Type of the kernel: 0=LINEAR 1=POLY 2=RBF 3=SIGMOID |
svm:svr:degree |
int | 3 |
min: 1 | For POLY |
svm:svr:gamma |
float | 0.0 |
min: 0.0 | For POLY/RBF/SIGMOID |
svm:svr:C |
float | 1.0 |
| Cost of constraint violation |
svm:svr:p |
float | 0.1 |
| The epsilon for the loss function in epsilon-SVR |
svm:svr:nu |
float | 0.5 |
| For NU_SVC, ONE_CLASS and NU_SVR |
svm:svr:degree_start |
int | 1 |
min: 1 | starting point of degree |
svm:svr:degree_step_size |
int | 2 |
| step size point of degree |
svm:svr:degree_stop |
int | 4 |
| stopping point of degree |
svm:svr:gamma_start |
float | 1.0e-05 |
min: 0.0 max: 1.0 | starting point of gamma |
svm:svr:gamma_step_size |
int | 100 |
| step size point of gamma |
svm:svr:gamma_stop |
float | 0.1 |
| stopping point of gamma |
svm:svr:p_start |
float | 1.0e-05 |
| starting point of p |
svm:svr:p_step_size |
int | 100 |
| step size point of p |
svm:svr:p_stop |
float | 0.1 |
| stopping point of p |
svm:svr:c_start |
float | 0.1 |
| starting point of c |
svm:svr:c_step_size |
int | 100 |
| step size of c |
svm:svr:c_stop |
int | 1000 |
| stopping point of c |
svm:svr:nu_start |
float | 0.3 |
min: 0.0 max: 1.0 | starting point of nu |
svm:svr:nu_step_size |
int | 2 |
| step size of nu |
svm:svr:nu_stop |
float | 0.6 |
min: 0.0 max: 1.0 | stopping point of nu |
Note:
- If a section name is documented, the documentation is displayed as tooltip.
- Advanced parameter names are italic.
This class implements the algorithm used by the homonymous tool which can be used to train models for MS/MS spectrum simulation.
For the primary ion types (y, b) a SVM is trained using the libSVM library.
All important libSVM parameters are accessible as parameters.
Please refer to the libSVM manuals for detailed description of the parameters. Default values are chosen as in the svm-training tool delivered with libSVM.
For the secondary types (a, c, x, z, losses, b2, y2) a simple Bayesian model is used.