OpenMS
Loading...
Searching...
No Matches
SignalToNoiseEstimatorMeanIterative.h
Go to the documentation of this file.
1// Copyright (c) 2002-present, OpenMS Inc. -- EKU Tuebingen, ETH Zurich, and FU Berlin
2// SPDX-License-Identifier: BSD-3-Clause
3//
4// --------------------------------------------------------------------------
5// $Maintainer: Chris Bielow $
6// $Authors: $
7// --------------------------------------------------------------------------
8//
9
10#pragma once
11
15#include <vector>
16#include <algorithm> //for std::max_element
17
18namespace OpenMS
19{
43 template <typename Container = MSSpectrum>
45 public SignalToNoiseEstimator<Container>
46 {
47
48public:
49
52
54 using SignalToNoiseEstimator<Container>::defaults_;
55 using SignalToNoiseEstimator<Container>::param_;
56
59
61
62
65 {
66 //set the name for DefaultParamHandler error messages
67 this->setName("SignalToNoiseEstimatorMeanIterative");
68
69 defaults_.setValue("max_intensity", -1, "maximal intensity considered for histogram construction. By default, it will be calculated automatically (see auto_mode)." \
70 " Only provide this parameter if you know what you are doing (and change 'auto_mode' to '-1')!" \
71 " All intensities EQUAL/ABOVE 'max_intensity' will not be added to the histogram." \
72 " If you choose 'max_intensity' too small, the noise estimate might be too small as well." \
73 " If chosen too big, the bins become quite large (which you could counter by increasing 'bin_count', which increases runtime).", {"advanced"});
74 defaults_.setMinInt("max_intensity", -1);
75
76 defaults_.setValue("auto_max_stdev_factor", 3.0, "parameter for 'max_intensity' estimation (if 'auto_mode' == 0): mean + 'auto_max_stdev_factor' * stdev", {"advanced"});
77 defaults_.setMinFloat("auto_max_stdev_factor", 0.0);
78 defaults_.setMaxFloat("auto_max_stdev_factor", 999.0);
79
80
81 defaults_.setValue("auto_max_percentile", 95, "parameter for 'max_intensity' estimation (if 'auto_mode' == 1): auto_max_percentile th percentile", {"advanced"});
82 defaults_.setMinInt("auto_max_percentile", 0);
83 defaults_.setMaxInt("auto_max_percentile", 100);
84
85 defaults_.setValue("auto_mode", 0, "method to use to determine maximal intensity: -1 --> use 'max_intensity'; 0 --> 'auto_max_stdev_factor' method (default); 1 --> 'auto_max_percentile' method", {"advanced"});
86 defaults_.setMinInt("auto_mode", -1);
87 defaults_.setMaxInt("auto_mode", 1);
88
89 defaults_.setValue("win_len", 200.0, "window length in Thomson");
90 defaults_.setMinFloat("win_len", 1.0);
91
92 defaults_.setValue("bin_count", 30, "number of bins for intensity values");
93 defaults_.setMinInt("bin_count", 3);
94
95 defaults_.setValue("stdev_mp", 3.0, "multiplier for stdev", {"advanced"});
96 defaults_.setMinFloat("stdev_mp", 0.01);
97 defaults_.setMaxFloat("stdev_mp", 999.0);
98
99 defaults_.setValue("min_required_elements", 10, "minimum number of elements required in a window (otherwise it is considered sparse)");
100 defaults_.setMinInt("min_required_elements", 1);
101
102 defaults_.setValue("noise_for_empty_window", std::pow(10.0, 20), "noise value used for sparse windows", {"advanced"});
103
105 }
106
113
119 {
120 if (&source == this) return *this;
121
124 return *this;
125 }
126
128
129
133
134
135protected:
136
137
142 void computeSTN_(const Container& c) override
143 {
144 //first element in the scan
145 PeakIterator scan_first_ = c.begin();
146 //last element in the scan
147 PeakIterator scan_last_ = c.end();
148
149 // reset counter for sparse windows
150 double sparse_window_percent = 0;
151
152 // reset the results
153 stn_estimates_.clear();
154 stn_estimates_.resize(c.size());
155
156 // maximal range of histogram needs to be calculated first
158 {
159 // use MEAN+auto_max_intensity_*STDEV as threshold
160 GaussianEstimate gauss_global = SignalToNoiseEstimator<Container>::estimate_(scan_first_, scan_last_);
161 max_intensity_ = gauss_global.mean + std::sqrt(gauss_global.variance) * auto_max_stdev_Factor_;
162 }
163 else if (auto_mode_ == AUTOMAXBYPERCENT)
164 {
165 // get value at "auto_max_percentile_"th percentile
166 // we use a histogram approach here as well.
167 if ((auto_max_percentile_ < 0) || (auto_max_percentile_ > 100))
168 {
170 throw Exception::InvalidValue(__FILE__,
171 __LINE__,
172 OPENMS_PRETTY_FUNCTION,
173 "auto_mode is on AUTOMAXBYPERCENT! auto_max_percentile is not in [0,100]. Use setAutoMaxPercentile(<value>) to change it!",
174 s);
175 }
176
177 std::vector<int> histogram_auto(100, 0);
178
179 // find maximum of current scan
180 auto maxIt = std::max_element(c.begin(), c.end() ,[](const PeakType& a, const PeakType& b){ return a.getIntensity() > b.getIntensity();});
181 typename PeakType::IntensityType maxInt = maxIt->getIntensity();
182
183 double bin_size = maxInt / 100;
184
185 // fill histogram
186 for(auto& run : c)
187 {
188 ++histogram_auto[(int) (((run).getIntensity() - 1) / bin_size)];
189 }
190
191 // add up element counts in histogram until ?th percentile is reached
192 int elements_below_percentile = (int) (auto_max_percentile_ * c.size() / 100);
193 int elements_seen = 0;
194 int i = -1;
195 PeakIterator run = scan_first_;
196
197 while (run != scan_last_ && elements_seen < elements_below_percentile)
198 {
199 ++i;
200 elements_seen += histogram_auto[i];
201 ++run;
202 }
203
204 max_intensity_ = (((double)i) + 0.5) * bin_size;
205 }
206 else //if (auto_mode_ == MANUAL)
207 {
208 if (max_intensity_ <= 0)
209 {
211 throw Exception::InvalidValue(__FILE__,
212 __LINE__,
213 OPENMS_PRETTY_FUNCTION,
214 "auto_mode is on MANUAL! max_intensity is <=0. Needs to be positive! Use setMaxIntensity(<value>) or enable auto_mode!",
215 s);
216 }
217 }
218
219 if (max_intensity_ < 0)
220 {
221 std::cerr << "TODO SignalToNoiseEstimatorMedian: the max_intensity_ value should be positive! " << max_intensity_ << std::endl;
222 return;
223 }
224
225 PeakIterator window_pos_center = scan_first_;
226 PeakIterator window_pos_borderleft = scan_first_;
227 PeakIterator window_pos_borderright = scan_first_;
228
229 double window_half_size = win_len_ / 2;
230 double bin_size = std::max(1.0, max_intensity_ / bin_count_); // at least size of 1 for intensity bins
231
232 std::vector<int> histogram(bin_count_, 0);
233 std::vector<double> bin_value(bin_count_, 0);
234 // calculate average intensity that is represented by a bin
235 for (int bin = 0; bin < bin_count_; bin++)
236 {
237 histogram[bin] = 0;
238 bin_value[bin] = (bin + 0.5) * bin_size;
239 }
240 // index of last valid bin during iteration
241 int hist_rightmost_bin;
242 // bin in which a datapoint would fall
243 int to_bin;
244 // mean & stdev of the histogram
245 double hist_mean;
246 double hist_stdev;
247
248 // tracks elements in current window, which may vary because of unevenly spaced data
249 int elements_in_window = 0;
250 int window_count = 0;
251
252 double noise; // noise value of a datapoint
253
255 SignalToNoiseEstimator<Container>::startProgress(0, c.size(), "noise estimation of data");
256
257 // MAIN LOOP
258 while (window_pos_center != scan_last_)
259 {
260 // erase all elements from histogram that will leave the window on the LEFT side
261 while ((*window_pos_borderleft).getMZ() < (*window_pos_center).getMZ() - window_half_size)
262 {
263 //std::cout << "S: " << (*window_pos_borderleft).getMZ() << " " << ( (*window_pos_center).getMZ() - window_half_size ) << "\n";
264 to_bin = (int) ((std::max((*window_pos_borderleft).getIntensity(), 0.0f)) / bin_size);
265 if (to_bin < bin_count_)
266 {
267 --histogram[to_bin];
268 --elements_in_window;
269 }
270 ++window_pos_borderleft;
271 }
272
273 //std::printf("S1: %E %E\n", (*window_pos_borderright).getMZ(), (*window_pos_center).getMZ() + window_half_size);
274
275
276 // add all elements to histogram that will enter the window on the RIGHT side
277 while ((window_pos_borderright != scan_last_)
278 && ((*window_pos_borderright).getMZ() < (*window_pos_center).getMZ() + window_half_size))
279 {
280 //std::printf("Sb: %E %E %E\n", (*window_pos_borderright).getMZ(), (*window_pos_center).getMZ() + window_half_size, (*window_pos_borderright).getMZ() - ((*window_pos_center).getMZ() + window_half_size));
281
282 to_bin = (int) ((std::max((*window_pos_borderright).getIntensity(), 0.0f)) / bin_size);
283 if (to_bin < bin_count_)
284 {
285 ++histogram[to_bin];
286 ++elements_in_window;
287 }
288 ++window_pos_borderright;
289 }
290
291 if (elements_in_window < min_required_elements_)
292 {
294 ++sparse_window_percent;
295 }
296 else
297 {
298
299 hist_rightmost_bin = bin_count_;
300
301 // do iteration on histogram and find threshold
302 for (int i = 0; i < 3; ++i)
303 {
304 // mean
305 hist_mean = 0;
306 for (int bin = 0; bin < hist_rightmost_bin; ++bin)
307 {
308 //std::cout << "V: " << bin << " " << hist_mean << " " << histogram[bin] << " " << elements_in_window << " " << bin_value[bin] << "\n";
309 // immediate division is numerically more stable
310 hist_mean += histogram[bin] / (double) elements_in_window * bin_value[bin];
311 }
312 //hist_mean = hist_mean / elements_in_window;
313
314 // stdev
315 hist_stdev = 0;
316 for (int bin = 0; bin < hist_rightmost_bin; ++bin)
317 {
318 double tmp(bin_value[bin] - hist_mean);
319 hist_stdev += histogram[bin] / (double) elements_in_window * tmp * tmp;
320 }
321 hist_stdev = std::sqrt(hist_stdev);
322
323 //determine new threshold (i.e. the rightmost bin we consider)
324 int estimate = (int) ((hist_mean + hist_stdev * stdev_ - 1) / bin_size + 1);
325 //std::cout << "E: " << hist_mean << " " << hist_stdev << " " << stdev_ << " " << bin_size<< " " << estimate << "\n";
326 hist_rightmost_bin = std::min(estimate, bin_count_);
327 }
328
329 // just avoid division by 0
330 noise = std::max(1.0, hist_mean);
331 }
332
333 // store result
334 stn_estimates_[window_count] = (*window_pos_center).getIntensity() / noise;
335
336
337
338 // advance the window center by one datapoint
339 ++window_pos_center;
340 ++window_count;
341 // update progress
343
344 } // end while
345
347
348 sparse_window_percent = sparse_window_percent * 100 / window_count;
349 // warn if percentage of sparse windows is above 20%
350 if (sparse_window_percent > 20)
351 {
352 std::cerr << "WARNING in SignalToNoiseEstimatorMeanIterative: "
353 << sparse_window_percent
354 << "% of all windows were sparse. You should consider increasing 'win_len' or increasing 'min_required_elements'"
355 << " You should also check the MaximalIntensity value (or the parameters for its heuristic estimation)"
356 << " If it is too low, then too many high intensity peaks will be discarded, which leads to a sparse window!"
357 << std::endl;
358 }
359
360 return;
361
362 } // end of shiftWindow_
363
365 void updateMembers_() override
366 {
367 max_intensity_ = (double)param_.getValue("max_intensity");
368 auto_max_stdev_Factor_ = (double)param_.getValue("auto_max_stdev_factor");
369 auto_max_percentile_ = param_.getValue("auto_max_percentile");
370 auto_mode_ = param_.getValue("auto_mode");
371 win_len_ = (double)param_.getValue("win_len");
372 bin_count_ = param_.getValue("bin_count");
373 stdev_ = (double)param_.getValue("stdev_mp");
374 min_required_elements_ = param_.getValue("min_required_elements");
375 noise_for_empty_window_ = (double)param_.getValue("noise_for_empty_window");
376 stn_estimates_.clear();
377 }
378
388 double win_len_;
392 double stdev_;
398
399
400
401
402 };
403
404} // namespace OpenMS
405
void defaultsToParam_()
Updates the parameters after the defaults have been set in the constructor.
Param param_
Container for current parameters.
Definition DefaultParamHandler.h:139
Param defaults_
Container for default parameters. This member should be filled in the constructor of derived classes!
Definition DefaultParamHandler.h:146
void setName(const String &name)
Mutable access to the name.
Invalid value exception.
Definition Exception.h:306
const ParamValue & getValue(const std::string &key) const
Returns a value of a parameter.
void setMaxFloat(const std::string &key, double max)
Sets the maximum value for the floating point or floating point list parameter key.
void setMaxInt(const std::string &key, int max)
Sets the maximum value for the integer or integer list parameter key.
void setMinInt(const std::string &key, int min)
Sets the minimum value for the integer or integer list parameter key.
void setValue(const std::string &key, const ParamValue &value, const std::string &description="", const std::vector< std::string > &tags=std::vector< std::string >())
Sets a value.
void setMinFloat(const std::string &key, double min)
Sets the minimum value for the floating point or floating point list parameter key.
float IntensityType
Intensity type.
Definition Peak2D.h:37
void setProgress(SignedSize value) const
Sets the current progress.
void startProgress(SignedSize begin, SignedSize end, const String &label) const
Initializes the progress display.
void endProgress(UInt64 bytes_processed=0) const
Estimates the signal/noise (S/N) ratio of each data point in a scan based on an iterative scheme whic...
Definition SignalToNoiseEstimatorMeanIterative.h:46
SignalToNoiseEstimator< Container >::PeakIterator PeakIterator
Definition SignalToNoiseEstimatorMeanIterative.h:57
SignalToNoiseEstimatorMeanIterative()
default constructor
Definition SignalToNoiseEstimatorMeanIterative.h:64
double win_len_
range of data points which belong to a window in Thomson
Definition SignalToNoiseEstimatorMeanIterative.h:388
double stdev_
multiplier for the stdev of intensities
Definition SignalToNoiseEstimatorMeanIterative.h:392
double noise_for_empty_window_
Definition SignalToNoiseEstimatorMeanIterative.h:397
~SignalToNoiseEstimatorMeanIterative() override
Destructor.
Definition SignalToNoiseEstimatorMeanIterative.h:131
SignalToNoiseEstimatorMeanIterative(const SignalToNoiseEstimatorMeanIterative &source)
Copy Constructor.
Definition SignalToNoiseEstimatorMeanIterative.h:108
double max_intensity_
maximal intensity considered during binning (values above get discarded)
Definition SignalToNoiseEstimatorMeanIterative.h:380
double auto_max_percentile_
parameter for initial automatic estimation of "max_intensity_" percentile or a stdev
Definition SignalToNoiseEstimatorMeanIterative.h:384
void computeSTN_(const Container &c) override
Definition SignalToNoiseEstimatorMeanIterative.h:142
void updateMembers_() override
overridden function from DefaultParamHandler to keep members up to date, when a parameter is changed
Definition SignalToNoiseEstimatorMeanIterative.h:365
int min_required_elements_
minimal number of elements a window needs to cover to be used
Definition SignalToNoiseEstimatorMeanIterative.h:394
SignalToNoiseEstimator< Container >::PeakType PeakType
Definition SignalToNoiseEstimatorMeanIterative.h:58
SignalToNoiseEstimator< Container >::GaussianEstimate GaussianEstimate
Definition SignalToNoiseEstimatorMeanIterative.h:60
int auto_mode_
determines which method shall be used for estimating "max_intensity_". valid are MANUAL=-1,...
Definition SignalToNoiseEstimatorMeanIterative.h:386
IntensityThresholdCalculation
method to use for estimating the maximal intensity that is used for histogram calculation
Definition SignalToNoiseEstimatorMeanIterative.h:51
@ MANUAL
Definition SignalToNoiseEstimatorMeanIterative.h:51
@ AUTOMAXBYSTDEV
Definition SignalToNoiseEstimatorMeanIterative.h:51
@ AUTOMAXBYPERCENT
Definition SignalToNoiseEstimatorMeanIterative.h:51
SignalToNoiseEstimatorMeanIterative & operator=(const SignalToNoiseEstimatorMeanIterative &source)
Definition SignalToNoiseEstimatorMeanIterative.h:118
int bin_count_
number of bins in the histogram
Definition SignalToNoiseEstimatorMeanIterative.h:390
double auto_max_stdev_Factor_
parameter for initial automatic estimation of "max_intensity_": a stdev multiplier
Definition SignalToNoiseEstimatorMeanIterative.h:382
This class represents the abstract base class of a signal to noise estimator.
Definition SignalToNoiseEstimator.h:33
double variance
variance of estimated Gaussian
Definition SignalToNoiseEstimator.h:108
PeakIterator::value_type PeakType
Definition SignalToNoiseEstimator.h:40
SignalToNoiseEstimator & operator=(const SignalToNoiseEstimator &source)
Assignment operator.
Definition SignalToNoiseEstimator.h:60
GaussianEstimate estimate_(const PeakIterator &scan_first_, const PeakIterator &scan_last_) const
calculate mean & stdev of intensities of a spectrum
Definition SignalToNoiseEstimator.h:113
double mean
mean of estimated Gaussian
Definition SignalToNoiseEstimator.h:107
std::vector< double > stn_estimates_
stores the noise estimate for each peak
Definition SignalToNoiseEstimator.h:146
Container::const_iterator PeakIterator
Definition SignalToNoiseEstimator.h:39
protected struct to store parameters my, sigma for a Gaussian distribution
Definition SignalToNoiseEstimator.h:106
A more convenient string class.
Definition String.h:34
Main OpenMS namespace.
Definition openswathalgo/include/OpenMS/OPENSWATHALGO/DATAACCESS/ISpectrumAccess.h:19